Our library features many hundreds of entries.

To search among them, click "Search" below to pull down options, including filtering by document type, author, year, and keyword.
Find these options under "Show only items where." Or you can also sort by author, title, type, and year clicking the headings below.

Export 50 results:
Filters: First Letter Of Title is L  [Clear All Filters]
2023
Lowe, S.; Huck, K.; Misico, A.; Scirbe, L.; Sussman, D. 2023. Lahontan Surface Water Ambient Monitoring Program’s 20-Year Water Quality Review and Program Recommendations. SFEI Contribution No. 1110. San Francisco Estuary Institute: Richmond. CA. p 137.

This 20-year water quality monitoring status and trends report for the Lahontan Water Board’s Surface Water Ambient Monitoring Program (Regional SWAMP) provides an overview of the environmental settings across the Region to give the reader a sense of the diverse ecological landscape, land uses, distribution and abundance of aquatic resources, and fire history. It includes a retrospective analysis of the Regional SWAMP’s ongoing, targeted water quality monitoring results (2000 - 2021), and concludes by presenting an adaptive monitoring and assessment framework (adapted from the California Wetlands Monitoring Workgroup's Wetland and Riparian Monitoring Plan, known as "WRAMP").  The framework was used to review the program and recommend future monitoring changes to improve efficiencies and address some of the recommendations listed in the Regional SWAMP's 2019 Core Program Review. 

 (13.45 MB)
SFEI. 2023. Landscape Scenario Planning Tool User Guide v2.2.0. San Francisco Estuary Institute: Richmond, Calif.
 (5.27 MB)
2022
 (4.84 MB)
 (5.24 MB)
Vaughn, L. Smith; Plane, E.; Harris, K.; Robinson, A.; Grenier, L. 2022. Leveraging Wetlands for a Better Climate Future: Incorporating Blue Carbon into California's Climate Planning. SFEI Contribution No. 1084. San Francisco Estuary Institute: Richmond, CA. p 31.

The 2022 update to California’s climate change Scoping Plan incorporates management actions in the state’s forests, shrublands/chaparral, grasslands, croplands, developed lands, deltaic wetlands, and sparsely vegetated lands. Missing from this list are the tidally-influenced coastal ecosystems outside the Sacramento-San Joaquin Delta. These blue carbon ecosystems support high rates of carbon storage and sequestration while providing many co-benefits that can enhance coastal climate change resilience. With sufficient data and robust modeling approaches, California has the opportunity to incorporate blue carbon in future Scoping Plan updates and set actionable targets for restoration, migration space conservation, and other management activities that promote long-term survival of the state’s coastal wetlands. To support this goal, this report offers a high-level overview of the state of the science for blue carbon quantification in California. This summary, which covers datasets and quantification approaches, key focus areas for additional science investment, and example scenarios for coastal wetland restoration, is intended to facilitate broader inclusion of blue carbon in future Scoping Plan updates and other state-level climate-planning documents.

 (9.61 MB)
Hampton, L. M. Thornto; De Frond, H.; Hermabessiere, L.; Miller, E.; de Ruijter, V. N.; Faltynkova, A.; Kotar, S.; Monclús, L.; Siddiqui, S.; Völker, J.; et al. 2022. A living tool for the continued exploration of microplastic toxicity. Microplastics and Nanoplastics 2 (13).

Throughout the past decade, many studies have reported adverse effects in biota following microplastic exposure. Yet, the field is still emerging as the current understanding of microplastic toxicity is limited. At the same time, recent legislative mandates have required environmental regulators to devise strategies to mitigate microplastic pollution and develop health-based thresholds for the protection of human and ecosystem health. The current publication rate also presents a unique challenge as scientists, environmental managers, and other communities may find it difficult to keep up with microplastic research as it rapidly evolves. At present, there is no tool that compiles and synthesizes the data from these studies to allow for visualization, interpretation, or analysis. Here, we present the Toxicity of Microplastics Explorer (ToMEx), an open access database and open source accompanying R Shiny web application that enables users to upload, search, visualize, and analyze microplastic toxicity data. Though ToMEx was originally created to facilitate the development of health-based thresholds to support California legislations, maintaining the database by the greater scientific community will be invaluable to furthering research and informing policies globally. The database and web applications may be accessed at https://microplastics.sccwrp.org/.

 (2.16 MB)
2020
Vaughn, L. Smith; Panlasigui, S.; Spotswood, E. 2020. Livestock grazing and its effects on ecosystem structure, processes, and conservation. SFEI Contribution No. 1011. San Francisco Estuary Institute: Richmond, CA.
 (1.75 MB)
2016
Lowe, S.; Salomon, M.; Pearce, S. 2016. Lower Peninsula Watershed Condition Assessment 2016. Technical memorandum prepared for the Santa Clara Valley Water District - Priority D5 Project. SFEI Contribution No. 809. San Francisco Estuary Institute: Richmond, CA. p 49.

In 2016 The Santa Clara Valley Water District and its consultants conducted a watershed wide survey to characterize the distribution and abundance of the aquatic resources within the Lower Peninsula watershed wtihin Santa Clara County, CA based on available GIS data, and to assess the overall ecological condition of streams within the watershed based on a statistically based, random sample design and the California Rapid Assessment Method for streams (CRAM).

 (4.36 MB)
2006
Brewster, E. 2006. Land Grant Research and the Pictorial Collection. In Exploring the Bancroft Library. Exploring the Bancroft Library. The Bancroft Library/Signature Books. Vol. In Faulhab, p 196.
2004
 (2.71 MB)
Davis, J. A. 2004. The Long-Term Fate of PCBs in San Francisco Bay. Environmental Toxicology and Chemistry 23, 2396-2409.
 (1.04 MB)
2001
Grossinger, R. M.; Brewster, E. 2001. Land Use Timeline for Crow Canyon and the San Lorenzo Creek Watershed. SFEI Contribution No. 352. Alameda Countywide Clean Water Program. p 6 pp.
 (21.63 KB)
1991
Gunther, A. J.; Blanchard, C.; Gardels, K. 1991. The Loading of Toxic Contaminants to the San Francisco Bay -Delta in Urban Runoff. SFEI Contribution No. 167. San Francisco Estuary Institue: Richmond, CA. p 82.