PFAS Stays in San Francisco Bay

SFEI senior scientist, Dr. Rebecca Sutton, published a new study in the journal Chemosphere showing that it will take almost 50 years for PFOA concentrations in water to stabilize in San Francisco Bay. This pales in comparison to the trajectory of PFOS concentrations that will not stabilize in sediment and fish for 500 years. PFOS and PFOA are harmful to humans, causing liver damage, endocrine disruption, fertility decrease, and cancer.

Suspended Sediment Flux in the San Francisco Estuary: Part I—Changes in the Vertical Distribution of Suspended Sediment and Bias in Estuarine Sediment Flux Measurements

Livsey, D. N.; Downing-Kunz, M. A.; Schoellhamer, D. H.; Manning, A. J. 2020. Suspended Sediment Flux in the San Francisco Estuary: Part I—Changes in the Vertical Distribution of Suspended Sediment and Bias in Estuarine Sediment Flux Measurements. Estuaries and Coasts . SFEI Contribution No. 990.

In this study, we investigate how changes in the vertical distribution of suspended sediment affect continuous suspended sediment flux measurements at a location in the San Francisco Estuary. Current methods for measuring continuous suspended sediment flux estimates relate continuous estimates of suspended-sediment concentration (SSC) measured at-a-point (SSCpt) to discrete cross-section measurements of depth-averaged, velocity-weighted SSC (SSCxs). Regressions that compute SSCxs from continuous estimates of SSCpt require that the slope between SSCpt and SSCxs, controlled by the vertical distribution of SSC, is fixed. However, in tidal systems with suspended cohesive sediment, factors that control the vertical SSC profile—vertical turbulent mixing and downward settling of suspended sediment mediated by flocculation of cohesive sediment—constantly vary through each tide and may exhibit systematic differences between flood and ebb tides (tidal asymmetries in water velocity or particle size). We account for changes in the vertical SSC profile on estimates of SSCxs using time series of the Rouse number of the Rouse-Vanoni-Ippen equation combined with optical turbidity measurements, a surrogate for SSCpt, to predict SSCxs from 2009 to 2011 and 2013. Time series of the Rouse number were estimated by fitting the Rouse-Vanoni-Ippen equation to SSC estimated from optical-turbidity measurements taken at two elevations in the water column. When accounting for changes in the vertical SSC profile, changes in not only the magnitude but also the direction of cumulative sediment-flux measurements were observed. For example, at a mid-depth sensor, sediment flux estimates changed from − 319 kt (± 65 kt, negative indicating net seaward transport) to 482 kt (± 140 kt, positive indicating net landward transport) for 2009–2011 and from − 388 kt (± 140 kt) to 1869 kt (± 406 kt) for 2013–2016. At the study location, estimation of SSCxs solely from SSCpt resulted in sediment flux values that were underestimates on flood tides and overestimates on ebb tides. This asymmetry is driven by covariance between water velocity and particle settling velocity (Ws) with larger Ws on flood compared to ebb tides. Results of this study indicate that suspended-sediment-flux measurements estimated from point estimates of SSC may be biased if systematic changes in the vertical distribution of SSC are unaccounted for.

Multi-box mass balance model of PFOA and PFOS in different regions of San Francisco Bay

Soberón, F. Sánchez; Sutton, R.; Sedlak, M.; Yee, D.; Schuhmacher, M.; Park, J. - S. 2020. Multi-box mass balance model of PFOA and PFOS in different regions of San Francisco Bay. Chemosphere 252 . SFEI Contribution No. 986.

We present a model to predict the long-term distribution and concentrations of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in estuaries comprising multiple intercommunicated sub-embayments. To that end, a mass balance model including rate constants and time-varying water inputs was designed to calculate levels of these compounds in water and sediment for every sub-embayment. Subsequently, outflows and tidal water exchanges were used to interconnect the different regions of the estuary. To calculate plausible risks to population, outputs of the model were used as inputs in a previously designed model to simulate concentrations of PFOA and PFOS in a sport fish species (Cymatogaster aggregata). The performance of the model was evaluated by applying it to the specific case of San Francisco Bay, (California, USA), using 2009 sediment and water sampled concentrations of PFOA and PFOS in North, Central and South regions. Concentrations of these compounds in the Bay displayed exponential decreasing trends, but with different shapes depending on region, compound, and compartment assessed. Nearly stable PFOA concentrations were reached after 50 years, while PFOS needed close to 500 years to stabilize in sediment and fish. Afterwards, concentrations stabilize between 4 and 23 pg/g in sediment, between 0.02 and 44 pg/L in water, and between 7 and 104 pg/g wet weight in fish, depending on compound and region. South Bay had the greatest final concentrations of pollutants, regardless of compartment. Fish consumption is safe for most scenarios, but due to model uncertainty, limitations in monthly intake could be established for North and South Bay catches.

Expert review of the sediment screening guidelines for the beneficial reuse of dredged material in San Francisco Bay

Foley, M.; Christian, E.; Goeden, B.; Ross, B. 2020. Expert review of the sediment screening guidelines for the beneficial reuse of dredged material in San Francisco Bay. SFEI Contribution No. 978. San Francisco Estuary Institute: Richmond, CA.

The beneficial reuse of dredged sediment is one strategy in a broader portfolio that is being developed for San Francisco Bay to help marshes adapt to rising sea level. Dredged sediment is currently being used in restoration projects around the Bay, but additional sediment is needed to meet the demand. The guidelines for determining if sediment is appropriate for beneficial reuse were developed twenty years ago. As part of assessing the role of dredged sediment in Bay restoration and adaptation strategies, the Regional Monitoring Program for Water Quality (RMP) and stakeholders recognized the need to revisit the beneficial reuse guidelines for dredged sediment. In September 2019, the RMP convened a workshop that included four technical experts to review the beneficial reuse guidelines. The experts were asked to answer three questions: 1) Are the current screening guidelines appropriate for beneficial reuse? 2) Is the current screening process appropriate and adequate? If not, what are your recommendations for improving it? and 3) How should bioaccumulation potential be addressed for the beneficial reuse of sediment? Based on the discussion of these three questions, six recommendations emerged from the workshop.

Microparticles, Microplastics, and PAHs in Bivalves in San Francisco Bay

Miller, E.; Klasios, N.; Lin, D.; Sedlak, M.; Sutton, R.; Rochman, C. 2020. Microparticles, Microplastics, and PAHs in Bivalves in San Francisco Bay. SFEI Contribution No. 976. San Francisco Estuary Institute: Richmond, CA.

California mussels (Mytilus californianus and hybrid Mytilus galloprovincialis / Mytilus trossulus) and Asian clams (Corbicula fluminea) were collected at multiple sites in San Francisco Bay. Mussels from a reference area with minimal urban influence were also deployed in cages for 90 days at multiple sites within the Bay prior to collection.Mussels from the reference time zero site, Bodega Head, had some of the lowest microparticle levels found in this study, along with resident clams from the San Joaquin and Sacramento Rivers and mussels transplanted to Pinole Point. The highest concentrations of microparticles were in mussels transplanted to Redwood Creek and Coyote Creek. The results of this study and current literature indicate that bivalves may not be good status and trends indicators of microplastic concentrations in the Bay unless the interest is in human health exposure via contaminated bivalve consumption.

Subscribe to RSS - Bay Regional Monitoring Program