LESSONS LEARNED FROM THE UC DAVIS BIOSENTINEL MERCURY MONITORING PROGRAM: Feedback Tool for Watershed Management

Part of the CBDA Fish Mercury Project

Department of Environmental Science and Policy University of California, Davis

Biosentinel Mercury Monitoring

Using small, young fish as <u>localized</u>, <u>time-sensitive</u> measures of **methylmercury exposure**

- Key element of the CalFed Mercury Strategy
- Techniques refined by UC Davis since 1985

• A consistent, fish-based measure of exposure, after MeHg has diffused out of the sediments, and is unambiguously moving into the food web

Biosentinel Mercury Monitoring

Using small, young fish as <u>localized</u>, <u>time-sensitive</u> measures of **methylmercury exposure**

- Key element of the CalFed Mercury Strategy
- Techniques refined by UC Davis since 1985

- Spatial patterns to a local scale
- Interannual trends and variability
- Within-year seasonal trends
- Performance measures for restoration and remediation

Entire Biosentinel Monitoring Region

- Over 3,000 individual small fish analyses/yr
- Feedback to restoration and watershed managers draws from entire program

Multiple Individual Fish Analyses (n = 30)

• Within pre-defined size ranges with consistent Hg

Intensive Sites, Multiple Species Data

San Joaquin River at Vernalis

Intensive Sites, Multiple Species Data

San Joaquin River at Vernalis

Intensive Sites, Multiple Species Data

San Joaquin River at Vernalis

Biosentinels for source identification: Sacramento River sculpin series (*Fall 2006*)

- Sculpin data suggest Colusa Drain as a source of MeHg
- Colusa Drain contains water from fields that are seasonally flooded--for waterfowl management and rice farming

Conclusions

Main cases of highly elevated exposure all appear to have been associated with some form of <u>episodic flooding</u>:

- ▲ Winter, rain-runoff flooding
- **△** Spring, snow-runoff flooding
- ▲ Episodic tidal flooding
- ▲ Managed flooding (summer/fall)
 - * Some may have realistic management solutions

Implications for Watershed Managers

Episodic flooding identified as the single most important factor leading to highly elevated MeHg exposure for fish.

Presence of a Hg loading source tends to increase exposure.

Watershed flooding can impact large parts of the system.

Toxicologically-significant changes in exposure can occur between years, and also seasonally.

Some major wetland areas are apparently *not* relative hot spots of MeHg exposure, including the Napa-Sonoma Marsh and much of the tidal Delta tule marsh and SAV zones.

A regional program of small fish biosentinel mercury monitoring has great value for watershed managers

Bretchen Geh<mark>rk</mark> Ioel Blum (not p

New, Expanded RMP Small Fish Program. Collaboration: SFEI, UC Davis, and others

Slottor

Topsmelt

Composites (4 comps x 5 fish)

New, Expanded RMP Small Fish Program

- Fixed, long-term sites
- Potential source sites (urban, mines, POTWs)
- Additional 1-time sites/yr (12 wetland, 12 bay)