

Lower South Bay Monitoring

Low dissolved oxygen (DO) in Slough Habitats

Low dissolved oxygen (DO) in Slough Habitats

Dissolved Oxygen Objectives for SF Bay

Indicator	Temporal Integration Method	Threshold by Region			
		North of Carquinez Br.	North/Central Bay	South Bay	Lower South Bay
DO (mg L ⁻¹)	none	7.0	5.0	5.0	5.0
DO (%sat)	3-month rolling median	80%	80%	80%	80%

Low DO in Slough Habitats

Low DO in Slough Habitats

Alviso Slough Pond A8 outlet

Assessment Framework in LSB Sloughs an Polofe ce Eksts

• Develop thresholds/tools/models that delimit oxygen conditions that are protective of aquatic life in LSB sloughs and tidal creeks.

Assess protective dissolved oxygen thresholds under future conditions.

Fish Community Sampling

Determine relevant species

Determine relevant species

Compile existing data on tolerance to low DO

Determine relevant species

Compile existing data on tolerance to low DO

Identify and rank most sensitive species

Acute Thresholds

Genera with mos	Value (DO mg/L)		
	Clupea (herring)	3.7	
With Sturgeon	Poecilia (mosquito fish)		
	Fundulus (killifish)		
	Acipenser (sturgeon)		
	Clupea (herring)		
\A/:Ha = + C1 =	Poecilia (mosquito fish)		
Without Sturgeon	Fundulus (killifish)	3.8	
	Harengula (sardine)		

Chronic Thresholds

Genera with most	Value (DO mg/L)		
	Oncorhynchus (salmonids)	5.3	
With Sturgeon and	Libinia (spider crab)		
Salmonids	Acipenser (sturgeon)		
	Paralichthys (flounder)		
	Libinia (spider crab)	4.5	
Without Sturgeon and	Paralichthys (flounder)		
Salmonids	Menidia (silverside)		
	Mercenaria (clams)		

Frequency of Exceedances of VPA Criteria

Restored Salt Pond

Newark Slough

Mowry Slough

Coyote Creek

Alviso Slough

Rond A8 outlet

Dumbarton Bridge

Compile experimental data of tolerance to low DO or field abundance & environmental data

Compile experimental data of tolerance to low DO or field abundance & environmental data

Determine temp dependence of species' oxygen supply and metabolic demand

Compile experimental data of tolerance to low DO or field abundance & environmental data

Determine temp dependence of species' oxygen supply and metabolic demand

DO required to support ecological activity at in situ temps

Compile experimental data of tolerance to low DO or field abundance & environmental data

Determine temp dependence of species' oxygen supply and metabolic demand

DO required to support ecological activity at in situ temps

Protective DO

Metabolic Indesconditions in Lower South Bay

Metabolic Inde&onditions in Lower South Bay

Metabolic Indeconditions in Lower South Bay

Metabolic Inde@xygen and Temperature Preference

Metabolic Inde@xygen and Temperature Preference

Fish distributions are consistent with oxygen sensitivity

- \rightarrow Animals are disproportionately present in higher O₂ conditions
- \rightarrow In general, a 'preference' for >50% O_2 sat (~4-5 mg O_2/L)

Some patterns consistent with temperature dependence of O2 threshold

Metabolic Inde@xygen and Temperature Preference

Fish distributions are consistent with oxygen sensitivity

- \rightarrow Animals are disproportionately present in higher O₂ conditions
- \rightarrow In general, a 'preference' for >50% O_2 sat (~4-5 mg O_2/L)

Some patterns consistent with temperature dependence of O2 threshold

Metabolic Indexindings To-Date

- DO concentrations occasionally dip below published lethal thresholds in LSB sloughs and often go below ecological thresholds
- Fish distributions in LSB are consistent with oxygen sensitivity, and oxygen thresholds appear to be temperature dependent
- Difficult to determine species-specific temperature-dependent hypoxia traits from LSB biogeography data
- Patterns in temperature-dependent hypoxia thresholds are relatively consistent across marine species and could be used to support the analysis

Existing biota data and targeted surveys

Existing biota data and targeted surveys

Analysis with generalized additive models (GAMs)

Existing biota data and targeted surveys

Analysis with generalized additive models (GAMs)

Model biota responses to environmental variation

Existing biota data and targeted surveys

Analysis with generalized additive models (GAMs)

Model biota responses to environmental variation

Protective DO

- Models accounted for 60-70% of deviance in abundance patterns of each species
- Variation in fish abundance occurred in space and time (regions, seasons, and years) and with environmental conditions
- Model performance increases with more complex models, however, simple vs. complex models exhibited different responses for some species

Lewis, in prep

Key Takeaways

- Dissolved oxygen levels in Lower South Bay sloughs frequently fall below the 5 mg/L Basin Plan objectives
- Study goal is to investigate what constitutes protective DO levels using multiple lines of evidence
- Draft chronic and acute criteria were developed using the Virginia Province Approach
- Other mechanistic and empirical analyses could be powerful for validating and informing the VPA

Collaborators/Experts

Evan Howard, NOAA Alexis Walls, Tetra Tech

Levi Lewis, UC Davis Perry de Valpine, UC Berkeley

Martha Sutula, SCCWRP Jim Hagy, EPA

Sujoy Roy, Tetra Tech Peter Tango, USGS

Jerry Diamond, Tetra Tech Christina Frieder, SCCWRP

More Information

Contact me: <u>ariellac@sfei.org</u>

Explore data using Shiny app: sfeinms.shinyapps.io/LSB_AF

→ Created by Dan Killam, SFEI

View past reports at: sfbaynutrients.sfei.org

Metabolic Indexiobal Hypoxia Thresholds with Temperature

Takeaway: patterns in temperature dependent hypoxia thresholds are relatively consistent across marine species