Power Analysis and Optimization of the RMP Status and Trends Program

Presentation to the RMP Fish Committee November 5<sup>th</sup>, 2008

Aroon Melwani, Ben Greenfield, John Oram San Francisco Estuary Institute



SAN FRANCISCO ESTUARY INSTITUTE

www.sfei.org

## Why Power Analysis on Sport fish?

- Adaptive management
- Optimize program
  - Evaluate Status and Trends elements and PS/SS
  - Develop alternative sampling designs
- Track how well the current design is working



SAN FRANCISCO ESTUARY INSTITUTE

#### **Objectives of Power Analysis**

- Compare to <u>thresholds</u>
  - Focus on thresholds of management significance for the Bay
  - Are we meeting management objectives?
     <u>TMDL targets (Hg and PCBs)</u>
- Evaluate long-term trends
  - <u>- "Given an expected rate of decline over a specified</u> time frame, what is the power of the sampling design to detect a significant negative trend?"</u>

## Threshold Analysis

- Compare concentrations to key thresholds
- Explicit assumptions
- 1-tailed t-test

• Determine number of samples required to distinguish average concentrations from threshold 80% and 95% of the time



### Threshold Comparison

|               | Mercury                     | Total PCBs | Current<br>Design |  |
|---------------|-----------------------------|------------|-------------------|--|
| Species       | Number of Samples Re<br>Pov |            |                   |  |
| Shiner        |                             |            |                   |  |
| Surfperch     | 3                           | 31         | 12                |  |
| White Croaker | 12                          | 17         | 12                |  |
|               |                             |            |                   |  |
| Species       | Number of Samples Re<br>Pov |            |                   |  |
| Shiner        |                             |            |                   |  |
| Surfperch     | 4                           | >50        | 12                |  |
| White Croaker | 19                          | 29         | 12                |  |

#### **Trend Analysis**

Simulated data sets – Monte Carlo method
Variability based on current RMP data
Trend and time frame based on Regional Board recommendations



#### Trends in Sport fish

|                          |                           | Shiner Surfperch |      |      |                           | White Croaker |      |      |      |      |      |      |
|--------------------------|---------------------------|------------------|------|------|---------------------------|---------------|------|------|------|------|------|------|
|                          | Sampling Interval (years) |                  |      |      | Sampling Interval (years) |               |      |      |      |      |      |      |
|                          |                           |                  | 1    | 2    | 3                         | 4             | 5    | 1    | 2    | 3    | 4    | 5    |
| Scenario:                | L.                        | 3                | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 98%  |
| PCBs                     | ) es                      | 6                | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |
| Sportfish                | ∕s€                       | 9                | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |
| 20 Year                  | <u>ام</u>                 | 12               | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |
| 3.5% Annual Decline      | ar                        | 15               | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |
|                          | ျပ                        | 18               | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |
| Scenario:                | L L                       | 3                | 100% | 100% | 100%                      | 100%          | 97%  | 100% | 100% | 100% | 100% | 98%  |
| Mercury                  | ples/yea                  | 6                | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |
| Sportfish                |                           | 9                | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |
| 30 Year                  |                           | 12               | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |
| <b>1% Annual Decline</b> | an                        | 15               | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |
|                          | ပ                         | 18               | 100% | 100% | 100%                      | 100%          | 100% | 100% | 100% | 100% | 100% | 100% |



SAN FRANCISCO ESTUARY INSTITUTE

# Summary of Sport fish Power Analysis

- Current concentrations of PCBs are above thresholds
- Will not detect concentrations below thresholds for some time
- Power to detect trends very good
- Continue with current design to track this decline over time



#### Final Report

#### www.sfei.org/rmp/ reports

Power Analysis and Optimization of the RMP Status and Trends Program

**FINAL REPORT** 

Aroon R. Melwani<sup>1</sup>, Ben K. Greenfield<sup>1</sup>, Andy Jahn<sup>2</sup>, John J. Oram<sup>1</sup>, Meg Sedlak<sup>1</sup>, and Jay Davis<sup>1</sup>

- 1. San Francisco Estuary Institute and the Regional Monitoring Program for Trace Substances
- 2. Statistical Consultant





SAN FRANCISCO ESTUARY INSTITUTE 7770 Pardee Lane, Second floor, Oakland, CA 94621 p: 510-746-7334 (SFEI), f: 510-746-7300, www.sfei.org