QA/QC Workshop Introduction to Data Quality

Workshop Goals

- Basic knowledge of QA/QC
 - Purpose of QA/QC
 - Indicators and methods of derivation
 - Implications for reporting and interpretation
 - Conceptual/example only actions/responses are project/purpose dependent

Agenda

- Intro to "data quality"- objectives and terminology Don Yee, SFEI
- Statistics of the Measurement Process Ken Osborn, EBMUD
- Organics Analysis by Isotope Dilution on HRMS, LC MS/MS and GC/MS Instrument Platform – Richard Grace, AXYS
- Trace Metals Analysis and Speciation QA/QC Michelle Briscoe, Brooks Rand
- QA Q&A Everything You Ever Wanted to Know but were afraid to ask - open panel discussion

Quality What?

- Quality Assurance (process)
 - All those planned and systematic activities implemented to provide adequate confidence that an entity will fulfill requirements for quality
- Quality Control (product)
 - The operational techniques and activities that are used to fulfill requirements for quality

Need for QA/QC

- Process for assuring and/or evaluating the suitability of collected data for a particular purpose
- Without it, too many questions
 - What/where/how measured?
 - Is that number "right"?
 - …+101 other doubts…

Data Quality Indicators (DQIs)

aka Measurement Quality Indicators/Objectives (MQIs/MQOs)

- Sensitivity
- Precision
- Accuracy/Bias
- Representativeness
- Completeness
- Comparability

Needed to answer some of the 101 Qs

Sensitivity

• If a pin dropped, would you hear it?

- Depends on background noise
- "Reporting limit" = what you call >noise

What About Blanks?

- Blank = measurement of non-sample
- Not explicit in SPARCC concept
- Part of "background noise", sensitivity
 - Blank "noise" could be random or systematic
 - In theory accounted for by reporting limit (RL)
 - But sometimes blank >RL (especially if sporadic)
 - May be OK if << regular samples

Precision

Precise = repeatable (with the same result)

No assurance it's right, just consistent

Accuracy/Bias

Bias = deviance from KNOWN target

EPA moving to accuracy = bias+precision
 SPARCC should be SPBRCC

Representativeness

• How typical of your target is your sample?

 If sample too small, too few, too close together, cherry pie = cherry?

Completeness

- How many valid measurements obtained versus the number desired or expected?
 - Too few and the sample set unlikely to be representative
 - Failures an indication of need to modify sampling/handling/analysis process, or expectations
 - Can be for individual analytes or for groups (e.g. when analytes need to be compared to each other)

Comparability

- Qualitative determination that two or more data sets may contribute to a common analysis
 - Performance on other DQIs may form the basis for judgment- similar detection limits, recoveries, reported range, etc.
 - Narrative descriptions also important
 - Details of sampling, handling, preparation, storage, and/or analytical methodologies

DQI, Meet Reality

- Ideally, detection in all samples, no bias, exact precision, all samples collected, using "correct" methods
- What you want ≠ what you can get
 - DQI targets often tempered by what is routinely achievable by lab(s) (reality)
 - Or what you can afford (more realitydetection limits especially \$ sensitive)

What About DQI "Failures"?

- Typical options include
 - Resample and/or reanalyze
 - Flag it- OK for some purposes
 - Censor it- more doubt than certainty
- What you do depends on project needs and priorities
 - Budget, indecision/uncertainty tolerance, built in safety factors

Data Quality Objectives

- DQOs help establish
 - What do you need?
 - Why do you need it?
 - How will you use it?
 - What is your tolerance for errors?
 - DQIs only address what is your error?

The DQO Process

Problem (Investigation or Study)

- 2. Identify the Decision.
- 3. Identify the Inputs to the Decision.
- 4. Define the Boundaries of the Study.
- 5. Develop a Decision Rule.
- 6. Specify Tolerable Limits on Decision Errors.
- 7. Optimize the Design.

DQOs Strike a Balance

DQIs in DQOs

- DQIs provide clues to help determine if DQO needs are met
 - Step 6, "Specify Tolerable Limits on Decision Errors" late in the process
 - Post facto evaluation possible, but inefficient
 - wrong/insufficient data, too loose/stringent
- For now assume our desired DQIs are known/appropriate
 - DQO development 6 hr course for EPA

Too Much Time?

- EPA Quality Systems training materials
 <u>http://www.epa.gov/quality/training.html</u>
- Courses include
 - Assessing Quality Systems
 - Detecting Improper Laboratory Practices
 - Interpreting Monitoring Data
 - Interpreting Multivariate Analysis
 - Introduction to Data Quality Assessment
 - Introduction to Data Quality Indicators
 - Introduction to Data Quality Objectives
 - Introduction to EPA Quality System Requirements
 - Introduction to Quality Assurance Project Plans
 - Introduction to Quality Management Plans
 - Overview of the EPA Quality System