Project Updates

December 9, 2009 TRC Meeting

Items

- Modeling Strategy and Workplan
- Year 1 Modeling Scope of Work
- Remote Sensing
- Guadalupe Watershed Model

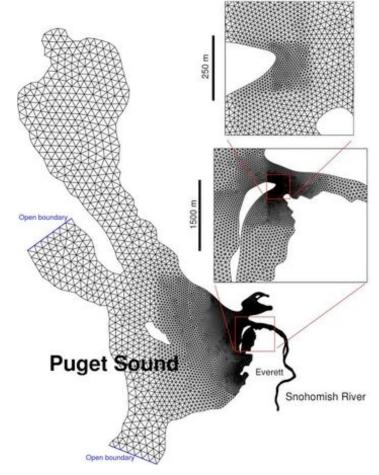
Quick Updates

- Remote Sensing
 - Draft report to be presented to CFWG Jan 2010
- Guadalupe Watershed Model
 - On hold. Waiting for empirical results from related SPLWG and STLS projects
 - Land-use specific loads
 - Spreadsheet model
 - Prop 13 contaminant data
 - To resume 2nd qtr 2010
 - Technical Reports
 - Draft Summer 2010
 - Final December 2010

Goal

- To predict the effect of different management alternatives on:
 - contaminant loads from watersheds
 - recovery of contaminated areas on the Bay margin
 - recovery of the Bay as a whole

Priority Questions


- **1. Bay Margins:** What is the contribution of contaminated Bay margins to Bay impairment and what are the projected impacts of management actions to Bay recovery?
- 2. Recovery of the Bay: What patterns of exposure are forecast for major segments of the Bay under various management scenarios?
- 3. Small Tributary Loads: Priority management questions regarding small tributary loading are listed in the Small Tributaries Loading Strategy. Watershed modeling will be needed to address questions 1, 2, and 4 from the Small Tributaries Loading Strategy.

Anticipated End Product

- The Bay model will consist of:
 - The core hydrodynamic model
 - A sediment transport model that includes interaction with the sediment bed
 - A particle tracking model allows one to track the trajectories of contaminated particles
 - A scalar transport model allows tracking of the transport of dissolved materials
 - A **biota** model closely linked to physical model

Anticipated End Product

• Model will utilize a flexible grid

What Can Be Expected of the Model?

- improve understanding of the fate of sediment and contaminants that enter the Bay in the vicinity of a particular Bay margin
- project effects of management at a contaminated site or within the watersheds adjacent to a site
- project progress toward cleanup targets for a site, region, or segment under various management scenarios
- aid in identifying high-leverage small tributaries and understanding the mechanisms by which they contribute to Bay impairment
- identify and quantify major input and loss pathways for water, sediment and contaminants
- aid in the development of climate change adaptation strategies

How much better than multibox? How much uncertainty in predictions at different spatial scales?

Bay "Boxes" and Linkages

<u>Geographic Components</u> Central Bay, South Bay, North Bay, Suisun Bay, Delta

Habitat Components

Channels, Subtidal shoals, Intertidal, Marshes, Perimeter Sloughs

Habitat-based decomposition more useful in understanding processes and pathways

What Will Limitations Be?

- Model will not
 - Be a real-time operational model
 - Predict exact attributes of single events
- Rather, model will predict general attributes of a collection of similar events

How Will Model Be Tested & Verified?

- Hydrodynamic model
 - calibrated and validated using existing physical data (temperature, salinity, sea-surface elevation, currents).
- The sediment model
 - calibrated and validated using existing suspended sediment and bed sedimentation data
- Contaminant model
 - calibrated and validated using existing water column, sediment, and biota contaminant data

Initial results will guide future data collection efforts.

How Will Uncertainty Be Assessed?

- Statistically by running a number of model simulations while varying input parameters and assessing the central tendency of all model outcomes
 - e.g., Monte Carlo simulations
- Analyses will put confidence limits around model predictions.

Potential Future Data Needs?

- high-resolution bathymetry (especially in margins)
- flux measurements at the mouth of local tributaries
- flux measurements at key Bay constriction points (e.g. Dumbarton Bridge)
- sediment erosivity studies (flume studies)
- sediment cores
- contaminant monitoring in shallow margin areas
- improved watershed loads estimates (currently being addressed by the RMP SPLWG and the Municipal Regional Permit)

Coordination With Other Efforts

- USGS
 - Delft model : sediment transport at GG
 - CASCaDE : effects of environmental change on restored ecosystems
- Stanford & UCB
 - Hydrodynamics & sediment transport in South Bay

Why Not Use Existing Models?

 RMP is asking very specific, detailed questions. Customized model is needed to answer these specific questions.

Contribution Of Other Programs

- The Coastal Conservancy originally funded the same investigators (M. Stacey et al) to develop a model of South Bay.
 - funds frozen indefinitely
- Scope for the Conservancy funds is similar to RMP modeling strategy
 - anticipated that when (if) unfrozen the two projects will provide synergy to move things forward at an even faster pace

Commitment Of Our Collaborators

- RMP modeling workplan is highly dependent on our collaborators
 - RMP does not have the capacity to develop and maintain the proposed models without their help
- RMP staff have developed relationships with the modeling collaborators over the past five years
- Collaborators have expressed their intention to participate in this project over the next five years

Contingency Plan

- Hire a modeler, though this would significantly increase the cost of the workplan
 - Either contract or full-time hire
 - Full-time hire better for RMP capacity building.
- RMP should maintain working version of model code and inputs
 - wherever possible, request copies of all model code and input files from contractors

Tasks

Task	2009	2010	2011	2012	2013	2014	2015
Bay & Margins Modeling							
Margins Conceptual Model	\$40,000*						
South Bay Water and "Sediment" Model		\$100,000	•				
Biota Conceptual Model		\$40,000					
Fieldwork to support South Bay Modeling			\$50,000				
South Bay Sediment Model			\$30,000				
Update South Bay Model With Empirical Results				\$50,000			
South Bay Contaminant & Biota Models					\$100,000		
Extend Model to Full Bay (Water and Sediment)					L L	\$100,000	
Add Contaminants and Biota to Full Bay Model							\$140,000
Watershed Modeling							
Priority questions and detailed task descriptions add	ressed by the	SPLWG	1				
Coordination							
Participation in or development of a Bay Area Modeling Forum		\$5,000	\$5,000	\$5,000	\$5,000	\$5,000	\$5,000

Budget Confidence: Budget has been vetted with our collaborators. Some changes have been made to tasks, so another round of vetting is in order.

Modeling Workplan - Yr 1 Scope Of Work

South Bay Model - hydrodynamics, particle tracking, maybe sediments

Participants: Mark Stacey, Ed Gross, SFEI Staff RMP Contribution: \$100,000 Project Completion: Dec-2010

Objectives

- Develop extensions of the SUNTANS-SF Bay modeling framework to consideration of specific perimeter watersheds.
- Extensions motivated by desire to understand how sediments and contaminant sourced in small, local watersheds are transported and distributed under the influence of tidal, wind and buoyancy forcing.

Tasks

- Assess possible locations for studies
- Develop necessary grid and forcing information
- Perform preliminary transport studies for passive scalars and Lagrangian particles

Information Gained/Uncertainty Reduced

- Preliminary information on the exchange of material between watersheds, margins, and open bay.
- Preliminary prioritization of margins and watersheds based on data availability and management concerns.
- Identify information gaps and data needs for future RMP modeling efforts

Modeling Workplan - Yr 1 Scope Of Work

Timeline

Presentations and Reports:

- Q1 Assessment of data availability; Identification of 3 study areas; Evaluation of time period to model.
- Q2 Acquire and process data; Grid generation at first location.
- Q3 Begin simulations at first location; Grid generation of second location.
- Q4 Begin simulations at second location; Grid generation of third location; Presentation of results.

Modeling Workplan - Yr 1 Scope Of Work

Deliverables

Draft and final technical reports documenting:

- Model development
- Preliminary (un-verified) results
 - Maps of initial zones of settling/dilution
 - Estimates of flushing rates/residence times for select margin locations
- Model grid(s)
- Model input files
- Model code (pending discussions with Stanford regarding license agreement)