UP3 Project

Urban Pesticide Use Patterns – Pesticides of Concern for Surface Water Quality

Kelly D. Moran, Ph.D. TDC Environmental, LLC

UP3 Project

Urban Pesticide Pollution Prevention Project

- Manager: San Francisco Estuary Project
- Funding: State Water Board, Municipalities
- <u>Goal</u>: Prevent surface water toxicity from urban pesticide use
- Activities:
 - Science, regulatory support for water quality agencies
 - Urban Pesticides Committee (teleconference)
 - E-mail listserver (open to all)
 - Web site <u>www.up3project.org</u>

Acknowledgements

- Data and Peer Review
 - DPR
 - California Water Boards
 - Tri-TAC and its members (POTWs)
 - CASQA and its members (Urban Runoff)
 - University of California
 - USGS
 - U.S. EPA Region 9
 - Many other individuals and organizations

Pesticides Aren't Emerging – They Are <u>Here</u>

- >80% of Urban Streams Exceeded Benchmarks in USGS NAWQA Monitoring
 - <u>Insecticides</u> more common, at higher concentrations in urban areas than in ag areas
- Record of Clean Water Act Violations
 - DDT & other OCs, OPs (diazinon), Pyrethroids
 - POTW compliance (Copper, Tributyltin, OPs)
- Single-Pesticide Regulatory Approach Causes Continual Market Shifts

Urban Context Differs from Agriculture

- ≥ Half of CA Pesticide Use Is Non-Ag
- Different use patterns
 - Applications on pavement
 - Sewer discharges
- Different pesticides

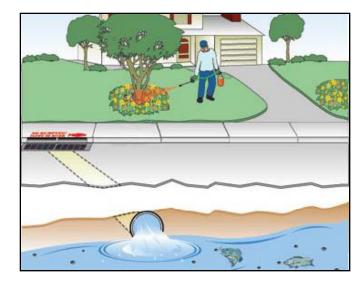


Figure from UC Statewide IPM Project

- Some problem pesticides primarily used in urban areas
 - Bifenthrin
- Biocides (antimicrobials) almost 100% urban
 - Triclosan, pentachlorophenol, creosote, pool & spa biocides

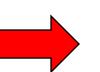
Major Use Patterns: In Water

Marine Antifouling Coatings

Algaecides

Priority In-Water Use Pattern: Marine Antifouling Paint

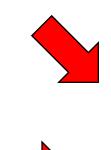
- Old: Tributyltin
- Current: Copper
- Coming: Irgarol, Zinc Pyrithione


Copper Pyrithione

Major Use Patterns: POTW Discharge

Priority POTW Discharges

Insecticides


- Both deliberate & incidental discharges
- Usually caught in reqd. toxicity monitoring
- Biocides Largely Unstudied
 - Past example: Tributyltin
 - Triclosan
 - Pentachlorophenol/ dioxins

Major Use Patterns: Outdoors

Priority Outdoor Use Patterns

Outdoor Structural Insecticides

- Water quality problems from <u>every</u> popular insecticide used since 1960s
 - Old: DDT, Chlordane, Diazinon, Chlorpyrifos
 - Current: Pyrethroids
 - Coming: Fipronil (maybe also Carbaryl, Malathion)
- Most load Runoff from storm events
- Biocides Largely Unstudied
 - Pentachlorophenol/dioxins?
 - Swimming Pools (PHMB) Creeks

California Drainage Design Enhances Pollutant Transport

Typical California urban stormwater conveyance system – Street gutter Water & pollutants efficiently moved to creeks Alternative stormwater conveyance system example – Vegetated swale Slower flow & infiltration reduces pollutant discharge (e.g., TSS removal about 80%)

TSS Data Source: Compilation of TSS removal data in CASQA (2003). California Stormwater BMP Handbook New Development and Redevelopment. January.

Phase Out Reduced Diazinon Levels in Chollas Creek (San Diego)

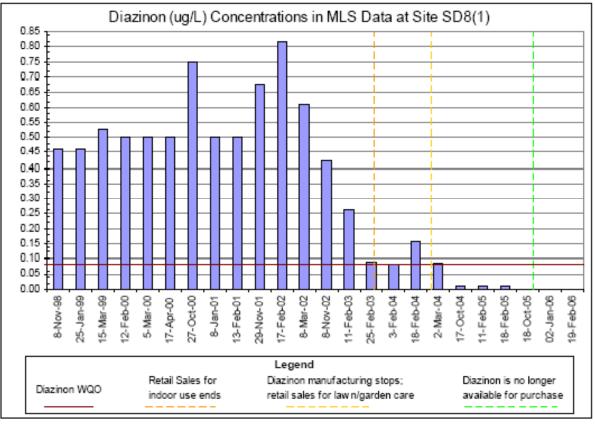


Figure 1-2. Diazinon Concentrations at Chollas Creek MLS Site SD8(1)

Source: City of San Diego, Chollas Creek TMDL Source Loading, Best Management Practices, and Monitoring Strategy Assessment, prepared by Weston Solutions, September 2006.

Pyrethroids Causing Toxicity in Urban Sediments Statewide

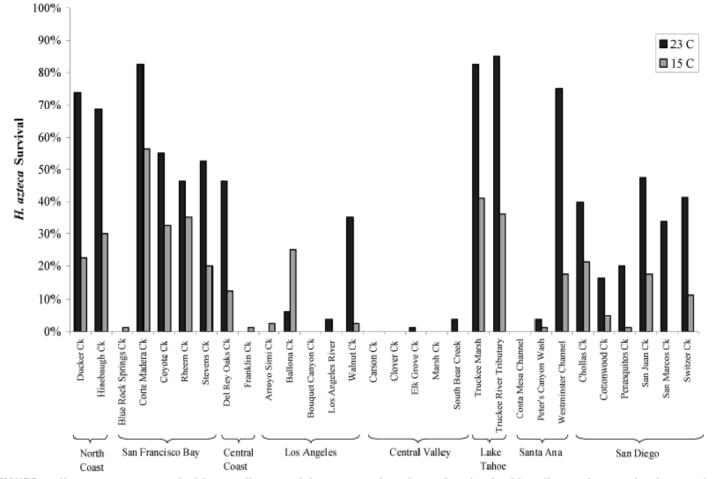
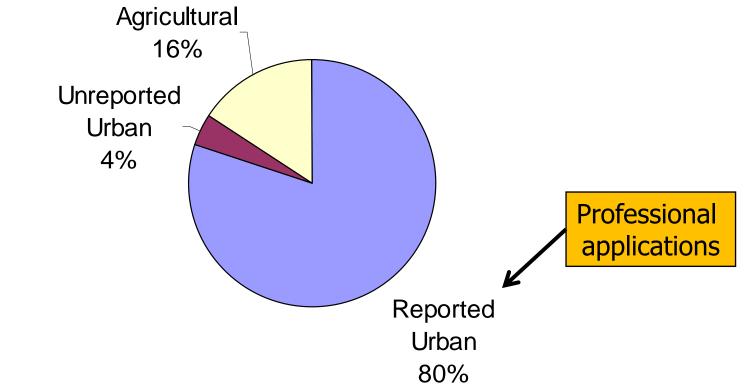


FIGURE 2. H. azteca percent survival from sediment toxicity tests conducted at 23C and 15C with sediments from each urban creek.


Source: Holmes et al, ES&T, 2008

Urban Surface Water Toxicity

- Pyrethroids causing toxicity in sediments
 - Severe, widespread: creeks, ag drains, few rivers
 - Linked to urban runoff, ag discharge
 - Multiple pyrethroids (bifenthrin>others)
 - Toxicity linked to OC concentration
- Pyrethroids also causing toxicity in water
 - During storm events SD & Riverside Counties
 - Toxicity to *Hyalella azteca*
 - In water with clean sand substrate
 - Also occurring in Delta (from Ag use)?
 - POD work (particularly work of Inge Werner, UC Davis)

Most Pyrethroid Use Is by Professional Applicators

California 2004-2005 Use of Urban Priority Pyrethroids (Permethrin Equivalents)

Source: California DPR Pesticide use reporting data, conversion to permethrin equivalents based on aquatic toxicity (see UP3 Project reports). Note: Data accuracy warrants only one significant figure. Additional digits provided to simplify category tracking.

Myth: Current Pesticides Are Being Monitored

- Most pesticides aren't monitored
- Analytical methods to detect pesticides at <u>environmentally relevant</u> <u>concentrations</u> are not available for most current-use pesticides
- Common "wisdom" has no basis
 - No measurement = No problem Not True!
 - No detection = No problem Not True!

Monitoring Pesticides is Important

- Identify Current Problems
- Evaluate Trends
 - Potential future problems
- Inform Regulatory Processes
 - Data needed for modeling linkage between urban use patterns & surface water
 - Information will improve pesticide regulators' ability to <u>prevent</u> problems

Monitoring Recommendations

- Toxicity Testing Efficient
 - Standard U.S. EPA Office of Water species
 - Most sensitive to current problem pesticides:
 - Fresh water & sediment Hyalella azteca
 - Salt Water *Americamysis bahia*
 - Water column & sediments
 - Pesticides are not the only cause of toxicity
 - Temperature may be important

Monitoring Recommendations

Pyrethroids

- Low detection limits needed (see UP3 Project recs.)
- Measure OC concentration & sediment grain size
- Water—storm events most important
- USGS developing standard sampling procedures
- Others: Malathion, Carbaryl, Fipronil, Pentachlorophenol
 - Fipronil sediment + water column
 - Detection limits important (see UP3 Project recs.)

Monitoring Recommendations

- Locations of Greatest Interest Are Nearest Sources
 - Marinas
 - Creek mouths
 - POTW discharges
 - Avoid overlap with permit-required monitoring
 - River/Delta (Ag Sources)
- Most Important Timing Storm Events