RMP Objective / Management Question	Cormorants	Forster's Terns	Higher Value
1: Long-term Trends	+++ (open water)	++ (shallow water)	Cormorants (open water focus, lower variance)
1: Regional Patterns	+++ (open water)	++ (shallow water)	Cormorants (open water focus, lower variance)
1: Emerging Pollutants	+++ (open water)	++ (shallow water)	Cormorants (open water focus, lower variance)
2: Endpoint for Forecasts	+++		Cormorants (link to mass budget models)
3: SP&L			
4: Ecological risks	+	+++	Terns
5: Compare to Guidelines	+	+++	Terns

Summary

- Cormorants better for trend monitoring of average condition in the Bay
- Terns better for effectsoriented monitoring, high exposure, shallow habitat, TMDL target

Proposed Long-term Plan for Avian Egg Monitoring in the RMP

Cormorants

- Analyze eggs collected in 2006
- Accrue funds for triennial sampling again in 2009

Terns

- Fund EEPS studies developing eggs as an effects indicator piggyback on FWS study
- Await completion of extensive existing work funded by FWS (organics) and CALFED/RMP (mercury) - includes eggs collected up through 2006
- Develop design for terns (power analysis, location selection)
- Accrue funds for triennial sampling in 2009 concurrent with cormorants

TABLE 7. MERCURY CONCENTRATIONS IN TERN EGGS IN SAN FRANCISCO BAY BY

Status and Trends Valuable for spatial and temporal trends: Hg

LOCATIONS AND REGION (in ppm on a fresh wet weight basis)									
REGION	LOCATION	LEAST TERN	Forster's TERN	CASPIAN TERN					
NORTH SF BAY	Napa Marsh		0.64b (6)	0.90b (5)					
CENTRAL SF BAY	Brooks Island			0.72b (5)					
	Alameda Naval Air Station	0.3 (3)		~ ~ ~					
SOUTH SF BAY									
	Charleston Slough		0.59b (5)						
	Hayward		0.50b (5)						
	Salt Pond A16		1.62a (5)						
	Salt Pond A7			1.18a (5)					
BAY WIDE AVERAGE		0.3	0.83	0.93					

Status and Trends Valuable for spatial and temporal trends: PBDEs

World-record concentration set at Baumberg 2 years in a row

Courtesy of USFWS

Exposure and Effects

 High value as effects indicator (reproductive success is low and contaminants could be a factor)

Exposure and Effects High value as effects indicator

Comparison to Guidelines
Value associated TMDL target for MQs 5.2 (impaired segments) and 5.3 (linking management to beneficial use endpoints)

Tern Egg Monitoring

- USFWS Long-term Plans (per Collin Eagles-Smith)
 - Continue long-term dataset
 - Focus on restoration sites
 - Look deeper into effects more sensitive measures (e.g., biomarkers of disruption of physiological function)
 - Funds from FWS, CALFED?, State Board?, SBSP?

Tern Egg Monitoring

- Recommended Program
 - Triennial sampling beginning in 2007 matching cormorants
 - Hg, Se, PBDEs
 - 3 composites at each of 6 locations (west Alviso, east Alviso, Baumberg, Napa Marsh, 2 to be named later - colonies less stable)
 - Sampling costs higher due to need to get second egg

Design Options

Terns

DESIGN				BENEFITS				COST			
				Obje	Objectives Addressed			ed	Power		
Design	# of sites	Frequenc	Season	1	2	3	4	5	80% Trend Power		Cost/yr
Proposed Design (Triennial)	6	Triennial	Spring						Hg (25/30)		\$20,000
, ,									PBDEs (56/30)		
Quadrennial	6	Quadrenni	Spring						Hg (25/30)		\$15,000
									PBDEs (56/30)		

Cormorants

DESIGN				BENEFITS			5			COST
				Obje	Objectives Addressed				Power	
Design	# of sites	Frequenc	Season	1	2	3	4	5	80% Trend Power	Cost/yr
Proposed Design	2	Trionnial	Carias							¢00.000
(Thennial)	3	Inenniai	Spring						Hg (20/20)	\$20,000
									DDTs (20/50)	
Quadrennial	3	Quadrenni	Spring						PCBs (20/50)	\$15,000
									Hg (20/20)	
									DDTs (20/50)	