# SF Bay Cores Update

**RMP TRC Meeting March 2009** 



# Background

- USGS (1990) coring
  - 90+ sites screened only
  - 2 depositional sites fully characterized
  - Subsurface max @ 2 sites
    - Pollutant reservoir?
- Why Recore?
  - 2 of 90 sites probably not representative
  - Old cores unusable for chem analyses

# Core- What Is It Good For?

(absolutely something)

- Bay pollutant inventory
  - Erosional time bombs?
- Model validation
  - Conceptual &/or mechanistic
- Model development
  - Empirical, mechanistic, hybrid

## Distribution of Sites (Bay)

Representative

- inventory, sedimentation

- 3 sites Central Bay, 2 sites each other segments
- Preference to RMP
   repeat stations



## Distribution of Sites (Wetland)

- Loading history

   Depositional zones
- 1 site each segment
  - Pt Edith Martinez
  - Wildcat Richmond
  - Damon SI. Oakland
  - Greco Island
  - Coyote Creek
  - Alviso Marina



## **Conceptual Model**

- Sedimentation (from isotopes, bathymetric history)
  - Similar in segment (shared water, sediment)
  - But mesoscale differences (trib/shore proximity, etc)
- Pollutant distribution function of
  - Sedimentation history
  - Local land use/ loading

# Dating: Bathymetric History



#### (USGS Bruce Jaffe)

- Sum bathymetric changes between surveys
  - + deposition erosion
- Some sites depositional & erosional different periods

## **Dating: Isotopes**

Cs-137 (bq/kg)



- (USC Hammond)
- Cs in A-bomb
   max ~1960
- Pb decay
  - half life 22 yrs
  - Decay/ mixing dilution can look similar
- If Cs & Pb similar
   likely mixing dilution

## Results

- Sites within segments similar (from bathymetry and radiodates)
  - Suisun, San Pablo eroding
  - Central, South neutral/eroding
  - Lower South accreting
- Wetland Hg indicates loading history
  - Subsurface max in wetlands everywhere
  - Layer often near surface (1950s?)



#### Central Bay 1960 = 5-20cm bay, ?? wetland





## Results

- Bay core Hg often ~uniform, or complex
  - RMP segment avg ~ core top section
  - Weak/no subsurface max in Bay sites
  - Mixing, erosion (or ~constant loads)?
    - All could give ~uniform profile
  - Some sites not well predicted (esp SU002)
    - Bathymetry, Cs, Hg mismatch
    - Multiple deposition & erosion w/ seds from different watersheds

## Implications?

- Few Hg ticking time bombs in Bay
  - So far, so good (2 of [90 + 11])
  - Largely WYSIWYG (surface ~ middle)
- Wetland cores capture historical pulses
- Historical Hg loads mostly eroded, dispersed in Bay

#### Lower South Bay

#### 1960 = 30-60cm bay, 80cm C.Creek



## LSB Metals

- Downcore concentrations noisy
  - Coyote Creek Hg max > Alviso!
  - Coyote Hg max @ 1960s depth (80cm)
  - Coyote Cu max @ 40cm = 1980s?
    - ~max Cu discharge late 1970s (Palo Alto)



~surface sediment Cu USGS long term data

#### Conaway 2004 vs Current



#### Lower South Bay PCBs

- PCB in bay cores max subsurface
  - LSB001 max @40cm (60cm =1960)
  - LSB002 max @30cm (30cm = 1960)



## Next Steps

- Finish wetland radiodating (April)
- More normalization? (high TOC in wetlands)
- Model accretion vs mixing for isotopes (USC)
- Understand data discrepancies
  - Analytical variation, spatial/temporal differences
- Implications for other work
  - More coring, modeling
- Partial (Hg) report for Pulse of Estuary
  - All done 2009 Q3?

## LSB Metals

- Downcore concentrations noisy
  - Coyote Creek Hg max > Alviso!
  - Coyote Hg max @ 1960s depth (80cm)
  - Coyote Cu max @ 40cm = 1980s?
    - ~max Cu discharge late 1970s (Palo Alto)



~surface sediment Cu USGS long term data

## SB001: Continuous Erosion?

Cs-137 (bq/kg)

Core ID: SB001, X: 564867.30345800000, Y: 4163027.61900000000 1858 depth: -122 1898 depth: -123 1931 depth: -157 1956 depth: -157 1956 depth: -124 1983 depth: -146 2005 depth: -160 2006 depth: -161 Reconstructed horizons: 0



~0cm to 1960

~15cm to 1960

## SB002: No Change ~1950s



#### **SB** Wetland Deposition

Cs-137 (bq/kg)



~30cm to 1960

## South Bay Metals

- Downcore concentrations noisy
  - Cu max @ Greco Island similar to Coyote, but into 1960s zone.
  - Greco Hg max ~constant in wetland to 55cm
     (1960s Cs penetration to 30cm) = 1930s?

## CB001: No Change ~1940s



#### CB002: Erosion to ~1920s



#### **CB006: Continuous Erosion**

Cs-137 (bq/kg)

Core ID: CB006A, X: 566290.21976900000, Y: 4174242.03589000000 1858 depth: -106 1898 depth: -134 1931 depth: -132 1956 depth: -183 1983 depth: -220 Reconstructed horizons: 0



~12cm to 1960

~0cm to 1960

## **Central Bay Metals**

- Bay downcore concentrations smaller range than in SB/LSB
- No dating for wetland cores yet
  - ~20cm surbsurface max for Hg, Se, Cu in wetland,
  - Similarly high conc for Se, Cu @ surface, 60cm

## SPB001: Erosion to ~1920s



## SPB002: Erosion to ~1880s



## San Pablo Metals

- ~20cm surbsurface max for Hg, Se, Cu in wetland
  - No dating for wetland cores yet
  - No secondary metal peaks
  - Deeper concentrations fairly constant

## SU001: Erosion to ~1910s



## SU002: Erosion to ~1890s



## Suisun Metals

- Hg highly variable @ Pt Edith and SU002
   No dating for wetland cores yet
- SU002 max concentrations in top section – Hg, Se, Cu, subsurface spikes as well