A PRESENTATION of the Regional Monitoring Program for Water Quality in the San Francisco Estuary

REVISITING STATUS & TRENDS

MEG SEDLAK and JAY DAVIS SAN FRANCISCO ESTUARY INSTITUTE September 27th, 2011

Today's Agenda:

- Meetings with dredgers/refineries
- Discuss options for changing water to biennial starting 2012
- Consider future changes:
 - Sediment (pending modeling needs)
 - Sport fish (reduce frequency? Fish comm.)
- Consensus on status quo
 - Bivalves & Birds
- Next steps

S&T Water Monitoring

- 22 Water sites
 - Annual metals and PBDEs
 - Biennial -PAHs, pesticides, & PCBs
 - Every 5 yrs -Aquatic toxicity
- Useful for evaluation of WQC
- Less useful for trends

TE Water Trends

- Spatial trends
 - Generally higher in
 Lower South Bay
 (less dilution)
- Temporal trends
 A not a good matrix

Dis Cu (ug/L)

But water maybe an indicator of some changes in Estuary?

SEE

MeHg declining?

– Photodemethylation?

MeHg "Trend" is also observed in sediment

Organic Trends

- Spatial
 - Generally higher in
 Lower South Bay
 (again less dilution)
- Temporal
 - None observed for legacy PCBs/PAHs
 - Possible trend for PBDEs
- PCB driver is biota;
 Hg driver is biota

Water Quality Drivers

- Water quality criteria and Cu/ CN SSO
 - Chemicals (metals, organics, ammonia, sulfide, etc.)
 - Oxygen, temperature, color, pH, sediment, etc.
- Narrative
 - Prohibition of biostimulatory substances
 - Prohibition of toxicity
- Reasonable Potential Analysis
- 303 (d) Listings
- Modeling/ nutrient needs?
- Evaluate a changing Bay?

Frequency

- Water not a good indicator of trends
- Recommend biennial (skip 2012)
 - "Low regret"
 - Continues to provide data to assess a potentially changing Bay (in reasonable time frame)
 - Continues to provide data for CN, Cu, MeHg etc.
 - Consider augmenting depending on modeling/ nutrient strategies and PCB, Hg, and EC syntheses

Options for Water

Water Option	Cost per year
1. Status Quo	\$140K/year
TE and modified Organics	
2. Biennial Premium	\$90K/year
Organics/TE every other year	
3. Biennial Select	\$70K/year
BDE/TE every 2 years	
PCBs/PAHs/Pesticides every 4 years	
4. Biennial Select 2	\$64K/year
BDE/TE every 2 years	
PCBs/PAHs/Pesticides every 6 years	
5. Biennial Select 3	\$56K/year
BDE/TE every 2 years	
PAHs/Pesticides every 6 years - No PCBs	

- Alternate wet (27 sites) /dry (47 sites)
- PAHs, PCBs, PBDEs, pesticides, & metals
- Trends and Thresholds

S&T Sediment Monitoring

Sediment Trends

- Seasonal trends (wet vs dry)
 - Toxicity
 - Less so for contaminants
- Spatial trends
 Important
- Annual trends

Seasonal Sediment Toxicity

- Seasonal variation was observed in wet weather data (prior to 2002)
 - Higher toxicity in winter
 - Particularly for amphipods (W-51% vs D-16%)
- Causes not known with certainty
 - Mixtures? Metals? PAHs?

Spatial Trends

Annual Trends

PCBs (ppb)

PAH (ppm)

Drivers

- Sediment TMDL targets for sediment disposal
 Hg and PCBs (99th percentile)
- Management of dredged sediments (requirements for additional testing)
 – PAHs, PCBs, and Hg (90th percentile)
- Forecasting impact of management actions (development of models)
- SQOs/ Permit conditions
- Sediment Toxicity Narrative in Basin Plan
- Cu SSO Investigate cause of sediment toxicity

REFERENCES OF STREET

Frequency

- Annual
 - Dredging management
 - SQOs
 - Modeling
- Number of sediment sites?

 Power analyses suggests ability to maintain trends if drop 2 sites per segment (8 to 6 sites)

Not much of saving ~\$35K

Sediment

- Maintain status quo
- Re-consider after preparation of modeling plan
 - Need for margin data?

S&T Bivalve Monitoring

BG20

BG30

Corbicula fluminea

BD50

BC10

BA30

15.000

• Organics and inorganics

Mytilus californianus

30.000 Meters

BA10

Trends of PCBs in Bivalves

Trends of PAHs in Bivalves

Bivalves

- Can decrease to once every 5 years and still identify a 50% decline in PCB concentrations in 20 years with >95% power
- Great trend indicator for organics (PCBs, PAHs, etc.)
- Consider adding ECs?
 - AXYS pro bono work 17 detected
 - Doesn't work for all contaminants (PFCs)
- Maintain status quo

S&T Sport Fish Monitoring

- Triennial at 5 popular recreation sites
 - PCBs, PBDEs, PAH, dioxin, pesticides, Se, Hg, ECs

Figure 5-1. Methylmercury concentrations (ppm) in sport fish species in San Francisco Bay, 2009. Bars indicate average concentrations. Points represent individual samples (either composites or individual fish).

Power Analysis for Sportfish

- Shows with existing design do not have sufficient power to detect exceedances
- Trends are flat
- Consider going to 5-yr cycle to sync with SWAMP/ Bight monitoring
 - Have RMP Fish committee evaluate this Fall

Fish Options

Fish Options	Cost per year
1. Status Quo (every 3 yrs)	\$87K/year
2. Quintenial	\$52K/year

S&T: Bird Eggs

- Cormorants: triennial at 3 sites
 Hg, Se, PBDEs, PCBs, Pesticides & EC
- Cormorants better for trend monitoring of average condition in the Bay

- Terns: Triennial
 - Hg, Se, PBDEs
- Terns better for effects-oriented monitoring, high exposure, shallow habitat, TMDL target

Power Analysis for Bird Eggs

- >80% ability to detect trends in PCBs, DDT and Hg
- Maintain status quo

Future Additions to S&T

- Small fish
 - Recommendations from PCB/Hg synthesis
- Contaminant profile with depth
 - Consider as special study?
- Modeling needs
 - Sediment
 - Nutrients
 - Evaluate in conjunction with modeling plan
- ECs
 - Evaluate after EC synthesis

Summary of "Low Regrets" for S&T:

- With some analytes being analyzed even less frequently (e.g., PCBs)
- Consider augmenting based on syntheses/strategies
- Consider changing:
 - Sediment pending modeling/ nutrient needs
 - Sport fish to 5 year cycle with SWAMP
- Maintain status quo
 - Bivalve
 - Birds

Next Steps

- Preparation of memo summarizing rationale for change/ status quo
- Preparation of "thumbnail" S&T Strategy