Microplastics Workgroup Meeting

Amy Kleckner, RMP Manager April 30, 2024 – Hybrid

SFEI Housekeeping Reminders

Out the doors and to the right

Password: sfsfsfsfsf Please silence cell phones & laptops

Zoom tips

- 1. Update your name and add your affiliation
- 2. Raise your hand if you have a comment or question
- 3. Unmute yourself and turn on video when you are speaking
- 4. Use the chat function if you have a comment, question, or technical issue

In person attendees

- 1. Mute your microphone and the volume on your laptop.
- 2. Turn off your camera.

Guidelines for Inclusive Conversations

- 1. Try it on
- 2. Practice self focus
- 3. Understand the difference between intent and impact
- 4. Practice both / and
- 5. Refrain from blaming or shaming self and others
- 6. Move up / move back
- 7. Practice mindful listening
- 8. Right to pass
- 9. Avoid jargon
- 10. It's okay to disagree

We acknowledge the San Francisco Bay is the ancestral homeland of many indigenous people, including the Ohlone, Patwin, Coast Miwok, and Bay Miwok.

MPWG Expert Advisors

Chelsea Rochman University of Toronto

Barbara Beckinghmam College of Charleston

INTRODUCTIONS

Meeting Agenda: DAY ONE

1. Introduction and Goals for Meeting	8:30
2. Information: Quantifying Tire Wear Particles	8:45
3. Information: Microplastics Studies Updates	9:15
4. Information: Developing a Statewide Plastics Monitoring Strategy	9:40
BREAK	10:00
5. Information: Fate and Effects of Microplastics in Fish	10:10
6. Discussion: Multi Year Planning	10:40

Meeting Agenda: DAY ONE cont.

7. Summary of Proposed MPWG Studies for 2025	11:00
LUNCH	11:45
8. Discussion of Recommended Studies for 2025	12:30
9. Closed Session - Decision Recommendation for 2025 Special Study Funding	1:45
10. Report Out on Recommendations	2:30
ADJOURN	

Regional Monitoring Program

Collect data and communicate information about water quality in San Francisco Bay in support of management decisions

- ~ 68 entities in the Program
 - Municipal wastewater
 - Industrial wastewater
 - Municipal stormwater
 - Dredgers

RMP Program Structure

Regional Monitoring Program

RMP Budgeted Expenses: 2024

Special Studies Budget for 2025 Tier 1 & Tier 2 study proposals

Predicted RMP Special Studies Budget for 2025 = \$1.54M

But wait there's more!

USEPA San Francisco Bay Program Office

• Expected \$54M per year (!) for San Francisco Bay

Subtidal eelgrass and oyster reef restoration Wetlands Regional Monitoring Program Beneficial Reuse of Dredged Material Support

In-Bay Monitoring of Pollutants, including trash, and algal species under the Regional Monitoring Program

> Nutrient Management Strategy

EPA Region 9 San Francisco Bay Program Office FY24 Draft Annual Priority List Large scale shoreline resilience, multi-benefit projects including horizontal levees and wastewater treatment/reuse

Special studies/projects for addressing PFAS in SF Bay

Large scale tidal wetlands restoration

Special studies/projects for addressing PCBs under TMDL implementation plan Large scale implementation of urban green stormwater infrastructure

BRRIT (Bay Restoration Regulatory Integration Team)

Getting the RMP Bucket Ready

- SC guidance to workgroups and staff: aim for 50% funding increase in 2025, 100% increase starting in 2026
- Important to include EJ and climate adaptation
- Great time for bigger ideas

2025 MPWG Updates

Diana Lin **MPWG Meeting** April 30, 2024 – Hybrid

*/ ASIA

Microplastics Update

<u>RMP</u>

- 1. MPWG Strategy Revision
- 2. Stormwater monitoring pilot year 1

Other SFEI

- 3. Evaluating the Efficacy of Rain Gardens
- 4. Dryer Study
- 5. Trash Capture Device

State Agencies

6. Statewide Plastics Monitoring

Strategy

- 7. SWB CEC Strategic Plan
- 8. DTSC Safer Consumer Products

Program

Other Collaborators

10. Field Sampling Evaluation

11. ToMEx 2.0 Update

1. MPWG Strategy Revision - Finalized

Microplastics Monitoring and Science Strategy for San Francisco Bay 2024 Revision

Prepared by:

Kayli Paterson, Ezra Miller, Diana Lin San Francisco Estuary Institute

CONTRIBUTION NO. 1144 / April 2024

- Updated Management Questions
 - MQ1: What are the levels of MP? What are the risks of adverse impacts?
 - MQ2: What are the sources, pathways, processes, and relative loadings?
- MYP and Priority Data Gaps
 - Water and sediment monitoring that fills small particle data gap
 - Stormwater monitoring

2. Stormwater Monitoring Year 1

Image credit: Kelly Moran and Shira Bezalel

3. Evaluating Efficacy of Microplastics Removal in Rain Gardens

~\$200K (EPA Region 9 Water Quality Improvement Fund)

SFEI

Image credit: Shira Bezalel

2. Insights and Lessons Learned

Image credit: Diana Lin and Sutapa Ghosal

SFEI

4. Dryer Study

Image credit: Lorien Fono

- ~\$400K (OPC, Sea Grant, NOAA)
- Are clothes dryers a significant source of microplastic pollution?
- Reporting late 2025
- Looking for ~10 participants
 - Contact diana@sfei.org

SFEI

5. Trash Capture Device

- ~\$200K (NOAA)
- Evaluate wether trash capture devices generate, capture, or allow microplastics in urban stormwater runoff to pass through?
- Collaboration with City of Santa Barbara, Moore Institute of Plastic Pollution Research, WSP
- Recently launched
- 3-year study

Microplastics Updates from State Agencies

6. Statewide Plastics Monitoring Strategy

- ~\$200K (OPC)
- Currently reviewing management questions that will guide and scope and direction
- Strategy report draft for review early 2025

Tony Hale SFEI, Program Director

Kaitlyn Kalua OPC, Deputy Director

Christine Sur OPC, Program Manager

7. State Water Board CEC Program

- Technical resource to guide decision-making and address issues with CECs
- CECs Program Strategic Plan to be released soon

8. Department of Toxic Substance Control

Safer Consumer Products (SCP) Process

Image credit: DTSC, Mark Eliot

Microplastics Updates from Southern California Coastal Water Research Project

10. Field Sampling Guidance to support standardization and comparability

- Goal to evaluate methods, and support efforts to standardize field sampling methods
- Reporting in the form of Standard Operating Procedure (SOP) that provide sampling guidance for each matrix

10. Ambient Water study design and reporting led by Chelsea Rochman

• Various pump sampling approaches to be tested by many project partners in various water bodies in fall 2024

Professor Chelsea Rochman University of Toronto

11. Toxicity of Microplastics Explorer Update

Leah Thornton Hampton SCCWRP Senior Scientist

Ezra Miller SFEI Environmental Scientist

Questions?

Microplastics Update

Element	Study	Funder	Questions Addressed	2020	2021	2022	2023	2024	2025	2026
Strategy	Microplastic Strategy	RMP Patagonia/OPC	1,2,3,4	20 (30)	10	37	13 (50)	16 (100)	17 (50)	17
	Tires Strategy (ECWG)	RMP	1,2			25.5	10*	10*	10*	10*
Bay Monitoring	Bivalves	RMP	1,3							
	Fish	RMP	1,3							
	Sediment	RMP/OPC U. Rovira I Virgili	1,3		3.5		(15)			40
	Water	RMP/OPC	1,3						65	
Characteri- zing sources, pathways, loadings, processes	Wastewater	SCCWRP/OPC	1,2,3		(26)	6		1		
	Stormwater	RMP OPC	1,2,3					68	51	(40)
	Stormwater Conceptual Model	RMP OPC	1,2,4	30 (30)	30 (90)					
	Evaluating efficacy of rain gardens	SFEP/EPA	2,4	000 00		(62)	(62)	(62)		
	Investigating clothing dryers as a source	Sea Grant/OPC	2,4					(170)	(230)	
	Air monitoring	RMP OPC/Sea Grant/NOAA	1,2							(40)
	Assessing Information on Ecological Impacts	RMP NSF/CCCSD	1	(50)	18 (7.5+50)					
	Characterize microplastic additives	RMP ECWG	1,4						120*	
	Tire market synthesis to inform science (pro bono)	UC Berkeley	1,2,4			(20)				
RMP-funded Special Studies Subtotal – MPWG				50	61.5	62.5	13	84	133	57
High Priority Special Studies for Future RMP Funding							1	116	40	
RMP-funded Special Studies Subtotal – Other Workgroups						5	10	10	130	10
MMP & Supplemental Environmental Projects Subtotal										
Pro-Bono & Externally-funded Special Studies Subtotal			110	173.5	82	127	332	280	80	
Ονεραί ι τοται			160	235	144.5	140	416	413	137	

9. Bight Monitoring of Microplastics in Sediment and Bivales

11. Stormwater study design and reporting led by Andy Gray

- Sampling methods will be evaluated in controlled flume in sedimentology laboratory (UC Santa Barbara, starting summer 2024)
- Methods include: surface bucket dip, isokinetic net, peristaltic pump
- Flume dosed with microplastic spheres (TBD 100, 500, 2000 um) and fibers of various polymer densities
- Simulate washload transport conditions

Prof. Andy Gray

UC Riverside

Prof. Vamsi Ganti UC Santa Barbara

12. SCCWRP - Monitoring Rain Gardens to inform Best Management Practices

Approach – Field Monitoring

- Conduct wet weather monitoring
 - \leq 6 bioretention/biofiltration type BMPs
 - Total 18 sampling events
 - Measure MP loads in & out of BMPs
- Conduct dry weather monitoring (start and end of project)
 - Measure MP occurrence in filter media
- Evaluate relevant design and maintenance elements
- Leverage SMC Regional BMP Monitoring Network

Elizabeth Fassman-Be ck

Conduct a coordinated, multi-agency investigation to characterize MP in wet weather urban runoff and explore whether existing filtration BMPs can/do effectively contribute to MP mitigation.

Outcomes include:

- Quantify the retention of microplastics in filtration BMPs, and influences on MP loading and BMP performance
- Identifying design guidance or operational conditions to support microplastics' retention that is complementary to existing best practice for filtration-type BMPs.
- Train next-generation engineers

Approach – Field Monitoring

Conduct wet weather monitoring

- \leq 6 bioretention/biofiltration type BMPs
- Total 18 sampling events
- Measure MP loads in & out of BMPs
- Conduct dry weather monitoring (start and end of project)
 - Measure MP occurrence in filter media
- Evaluate relevant design and maintenance elements

Leverage SMC Regional BMP Monitoring Network

2. Evaluating Efficacy of Microplastics Removal in Rain Gardens

SFEI

8. Department of Toxics Substance Control 2024-2026 Priority Product Work Plan – Under Consideration Product Categories Currently Under Evaluation

Beauty, Personal Care, and Hygiene Products

Cleaning Products

Building Products & Materials Used in Construction and Renovation

Children's Products

Products that Contain or Generate Microplastics

Paints

8. Department of Toxics Substance Control

Alternatives Analysis (Industry Step) Alternatives Selection Alternatives Analysis Guide Version 1.0 ARTMENT OF TOXIC SUBSTANCES CONTR. SAFER PRODUCTS AND WORKPLACES PROD

The AA process seeks to avoid regrettable substitutions

Answers key questions:

- Is it necessary?
- Is there a safer alternative?
- What are the tradeoffs?

Requires:

- Ecological impacts
- Life cycle impacts
- Economic analysis
- Performance evaluation
- Public comment

Item 06: MPWG Multi-Year Plan

Diana Lin **MPWG Meeting** April 30, 2024 – Hybrid

MPWG Multi-Year Plan

Element	Study	Funder	Questions Addressed	2020	2021	2022	2023	2024	2025	2026
Strategy	Microplastic Strategy	RMP Patagonia/OPC	1,2,3,4	20 (30)	10	37	13 (50)	16 (100)	20 (50)	20
	Tires Strategy (ECWG)	RMP	1,2			25.5	10*	10*	10*	10*
	Bivalves	RMP	1,3							
Bay	Fish	SEP/EPA	1,3						130	
Monitoring	Sediment	RMP/OPC U. Rovira I Virgili	1,3		3.5		(15)			100
	Water	RMP/OPC	1,3						224.3	
	Wastewater	SCCWRP/OPC	1,2,3		(26)					
	Stormwater	RMP OPC	1,2,3					78	100.5	(80)
	Stormwater Conceptual Model	RMP OPC	1,2,4	30 (30)	30 (90)		8			
Characteri-	Evaluating efficacy of rain gardens	SFEP/EPA	2,4			(62)	(62)	(62)		
zing sources,	Investigating clothing dryers as a source	Sea Grant/OPC	2,4					(170)	(230)	
loadings, processes	Air monitoring	RMP OPC/Sea Grant/NOAA	1,2							(80)
	Assessing Information on Ecological Impacts	RMP NSF/CCCSD	1	(50)	18 (7.5+50)					
	Characterize microplastic additives	RMP ECWG	1,4							
	Tire market synthesis to inform science (pro bono)	UC Berkeley	1,2,4			(20)				
RMP-funded Special Studies Subtotal – MPWG				50	61.5	62.5	13	94	344.8	120
High Priority Special Studies for Future RMP Funding									324.8	80
RMP-funded Special Studies Subtotal – Other Workgroups				21			10	10	10	10
MMP & Supplemental Environmental Projects Subtotal										
Pro-Bono & Externally-funded Special Studies Subtotal				110	173.5	82	127	332	410	80
OVERALL TOTAL				160	235	144.5	140	426	754.8	200

Discussion: Priorities for Future Monitoring

 RMP can provide leadership in identifying priority data gaps to inform management

Suggested Multi-Year Plan Monitoring Priorities

	Completed or On-going	Current Proposal	Future
Bay Monitoring	 Water (2017-2018) Sediment (2014, 2015, 2018) Bivalves (2018) Prey Fish (2017) 	 Water (Tier 1) Sport fish (Tier 2) 	 Sediment (archived 2023, S&T 2028) Water (S&T 2027)
Characterizing Sources, Pathways, Loadings, Processes	 Wastewater (2017) Stormwater (WY2017, WY2018) Investigating dryers (on-going) 	Stormwater (Tier 1)	 Urban stormwater (annual) Air Microplastics additives

Any Priorities Missing?

2025 MPWG Proposals

Diana Lin **MPWG Meeting** April 30, 2024 – Hybrid

WAREAU WAREA

	2025 MPWG Proposals	Budget
Γ	Microplastics in Urban Stormwater Runoff Pilot Year 2	\$100,500
Tier 1 –	Size Distribution of Microplastic Particles in San Francisco Bay	\$224,300
	Total	\$324,800
Tier 2	Microplastics in San Francisco Bay Sport Fish	\$130,000

Joint ECWG proposals (informational only)

- Tire Rubber Marker Analysis: \$105,000
- Tire Wear Emissions and Washoff Estimates Journal Paper: \$15,000

Microplastics in Urban Stormwater Runoff Pilot Year 2

Diana Lin, Alicia Gilbreath, Lester McKee, Rebecca Sutton

Motivation

- Stormwater monitoring is a priority data gap
- Need cost-effective approaches by leveraging other RMP stormwater monitoring efforts

Study Objectives

- Evaluate whether single-depth sampling is adequate compared to depth-integrated sampling in pilot study
 - Opens opportunity to leverage other monitoring methods
- Measure smaller microplastics and tire wear particles (previously under-counted)

Approach

- Small pilot: sample at 2 sites, one storm event each
- Choose sites likely to be well-mixed based on RMP experience with suspended sediment
 - Are there important differences between microplastics and suspended sediment transport for the most abundant types of microplastics?

Approach - Sample Collection

- Collect simultaneous single-depth samples at 3 depths to evaluate variations in microplastics
- Hydrological depth adjusted at each time point
- Collect 5 time points during course of storm flows
- Turbidity measured in real-time

Approach – Processing and Analysis

Data Analysis

- Statistically evaluate whether single-depth measurements sufficiently representative of water column during storm flows
 - total suspended solids
 - microplastics
 - tire wear particles
- Inform RMP MPWG Strategy for stormwater monitoring
- Inform Statewide Plastics Monitoring Strategy and Plan and SCCWRP stormwater sampling guidance

Deliverables

• Draft and final technical report in February 2026

Budget

Expense	Estima
Labor	
Study design	12
Sample Collection	35
Data management	8,
Analysis and Reporting	30
Subcontracts	

Microplastics laboratory analysis via FTIR/Raman spectroscopy (Moore Institute of Plastic Pollution Research or equivalent laboratory)

Tire wear particle analysis via pyrolysis GC-MS

Direct Costs

Supplies	10,000
Travel and shipping	2,000
Grand Total	182,400
Subtract Year 1 funded amount	-78,100
Year 2 Funding Request	<u>100,500</u>

Estimated Cost

12,300 35,500	
8,300	
30,800	Add on proposal:
70,400	 LDIR analytical method to quantify tire wear particles Barbara Beckinghman
16.000	 (College of Charleston) Stefanie Whitmire
10,000	(Clemson UniversityBudget: \$7,800
10,000	
2,000	
182,400	

Size Distribution of Microplastic Particles in San Francisco Bay

Diana Lin, Ezra Miller, Kayli Paterson

Motivation

 Smaller microplastics in previous ambient water monitoring is a priority data gap to understand microplastics levels

Background

Smaller particles are also important for risk characterization

Background

Coffin et al., 2022. Risk characterization of microplastics in San Francisco Bay, California.

- Sized based re-scaling results in significantly higher levels of estimated microplastics
- Introduces significant uncertainty
 - Models are based on European data
 - Models lack data points for smallest particle sizes
- State Water Board water quality assessment indicates "beneficial uses may be potentially threatened"

Approach - Field Sampling

- Limited ambient water monitoring to address data gap
- Leverage 2025 S&T Dry Season Water Cruise
- 10 sites from different subembayments
 - 10 Samples + 10 Replicates = 20 Total Samples

Approach - Field Sampling

- Develop in-line filtration device to collect microplastics down to 10 µm
- Surface water
- Evaluate microplastic number, morphology, polymer, and size distributions
- Compare with published particle size distribution models and related studies

Deliverables

- Draft and final technical report (draft manuscript)
- Inform RMP MPWG Strategy
 - monitoring strategy
 - future risk characterization
- Inform Statewide Plastics Monitoring Strategy and Plan and SCCWRP ambient water sampling guidance

Deliverables & Budget

Expense	Estimated Cost
Labor	
Study Design	25,300
Pilot and Sample Collection	28,500
Data Technical Services	15,000
Analysis and Reporting	
Subcontracts	
Microplastics analysis via FTIR/Raman spectroscopy (Ocean Diagnostics or equivalent laboratory)	57,200
Direct Costs	
Equipment and supplies (including filtration assembly)	9,000
Shipping	2,500
Open Access Publication	2,500
Grand Total	202,100

Microplastics in San Francisco Bay Sport Fish

Diana Lin, Chelsea Rochman

Motivation

- Sport fish data gap in Bay monitoring
- Leverage S&T sample collection
- Potential human exposure route

Approach

• Sport fish will be collected as part of the RMP S&T monitoring effort for the summer of 2024

	Shiner Surfperch	Striped Bass
Central Bay		10
San Francisco	10	
Berkeley	10	
South Bay	10	10
San Leandro Bay	10	
San Pablo Bay	10	
Totals	50	20

Deliverables & Budget

- Draft and final report
- Budget: \$130K

Tire proposals (Informational only)

Reviewed and recommended for funding by ECWG

Tire Rubber Marker Analysis

- Improve methods to quantify tire wear particles in Bay Area samples
- Collaboration with Elisabeth Rødland, Norwegian Institute for Water Research
- Approach
 - Collect tire tread rubber samples from representative set of tires for region
 - Analyze for 4 tire rubber markers using pyrolysis GC-MS
 - Results used as reference database for current and future RMP tire studies

Budget: \$105,000

Tire Wear Emissions and Washoff Estimates Journal Paper

- RMP report *Tire Wear: Emissions Estimates and Market Insights to Inform Monitoring Design*
 - Estimated total tire wear emissions and washoff into surface water
 - Internationally unique ability to do these estimates for tires
 - To our knowledge, this is the first quantitative comparison between microplastic emissions and loads in urban runoff
- Sought publication partnership; none found
- Scientific journal paper would increase use
 - Improved study design and data interpretation by others would improve information available to the RMP
 Budget: \$15,000

Questions

Tire Rubber Marker Analysis

Diana Lin, Kayli Paterson, Kelly Moran, Rebecca Sutton, and Elisabeth Rødland

Motivation

- Tire particles may be the largest source of microplastics entering SF Bay
- Tire related contaminates (Such as 6PPD-q) are also a big issue
- No comprehensive database for tire related additives exist for California
- A representative tire additive database will help improve tire concentration estimates

Approach

- Identify different tire models that would best represent Bay market
 - Vehicle class
 - Tire type (all season, winter)
 - Brand (Michelin, Goodyear, etc.)
 - Popularity
- Gather tread material from 30 tires
- Send to NIVA for tire marker analysis using Pyrolysis GC/MS
- Use database to improve Bay regional tire wear estimates
- Publish and share

Deliverables & Budget

- Draft and final report (draft manuscript)
- Budget: \$105K

Tire Wear Emissions and Washoff Estimates Journal Paper

- RMP report *Tire Wear: Emissions Estimates and Market Insights* to Inform Monitoring Design
 - Estimated total tire wear emissions and washoff into surface water
 - Internationally unique ability to do these estimates for tires
 - To our knowledge, this is the first quantitative comparison between microplastic emissions and loads in urban runoff
- Sought publication partnership; none found
- Scientific journal paper would increase use
 - Improved study design and data interpretation by others would improve information available to the RMP

Budget: \$15,000

Background

- State Water Board water quality assessment indicates "beneficial uses may be potentially threatened"
 - Uncertainty in analysis

