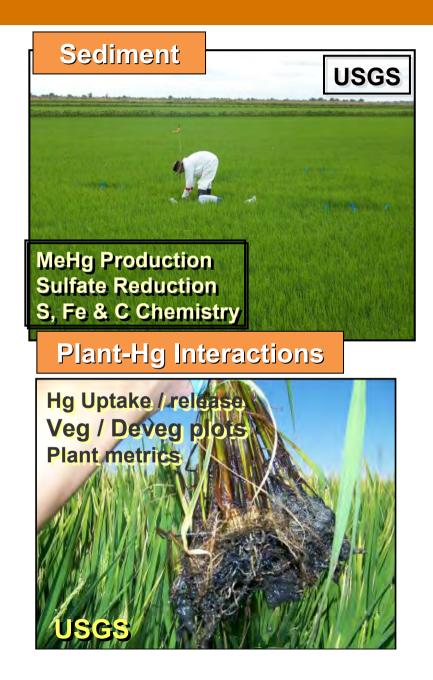
Photo-degradation of Monomethyl Mercury in the Sacramento-San Joaquin Delta Estuary and Agricultural and Natural Wetlands in the Yolo Bypass

Gary Gill - Pacific Northwest National Laboratory Amy Byington - Marine Pollution Studies Laboratory/MLML Mark Stephenson - Marine Pollution Studies Laboratory/MLML

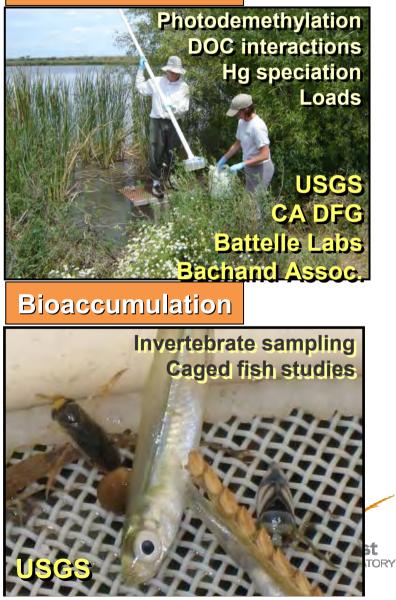
San Francisco Estuary Institute RMP Annual Mercury Meeting January 27, 2010

Major Question

How important is photo-degradation of monomethyl mercury in the biogeochemical cycling and transport of mercury in aquatic ecosystems?



Mercury Cycling in Agricultural (Rice) and Non-agricultural Wetlands of the Yolo Bypass Wildlife Area, California


C.N. Alpers¹, J.A. Fleck¹, L. Windham-Myers², M. Marvin-DiPasquale², J. Ackerman³, M. Stephenson⁴, G. Gill⁵, G.R. Aiken⁶, H.E. Taylor⁶, and C. Stricker⁷

> 1 USGS WRD CA WSC, Sacramento, CA 2 USGS WRD BRR-WR, Menlo Park, CA 3 USGS BRD WERC, Davis, CA 4 Calif. Dept. of Fish and Game, Moss Landing, CA 5 Pacific NW National Laboratory, Sequim, WA 6 USGS WRD BRR-CR, Boulder, CO 7 USGS GD and BRD, Denver, CO

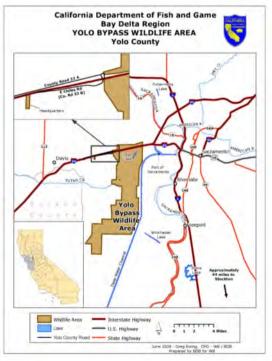
Study Components

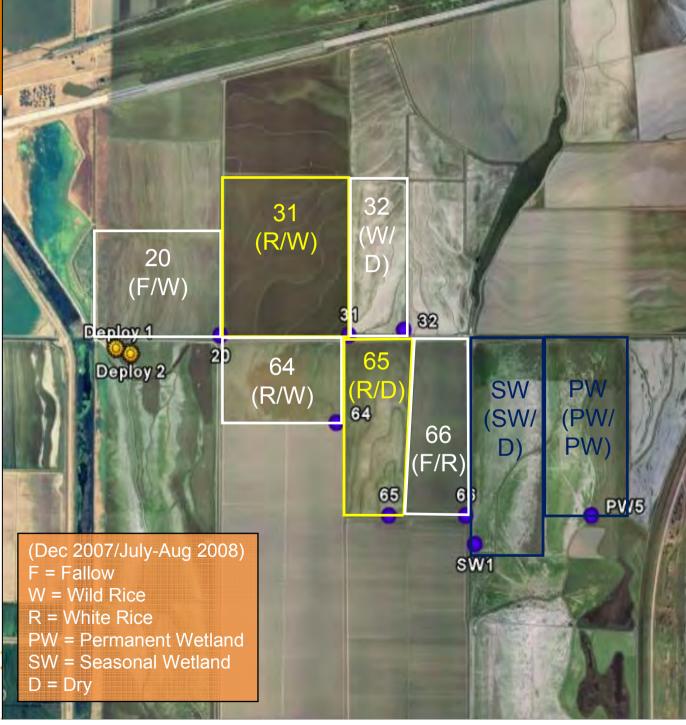
Water Column

Overall Project Goals

- Examine MMHg Cycling in Different Agricultural Rice Field Types
- Examine Role of Management Practices on Hg/MMHg Cycling
- Compare Hg Bioaccumulation among wetland habitats

Types of Agricultural Fields





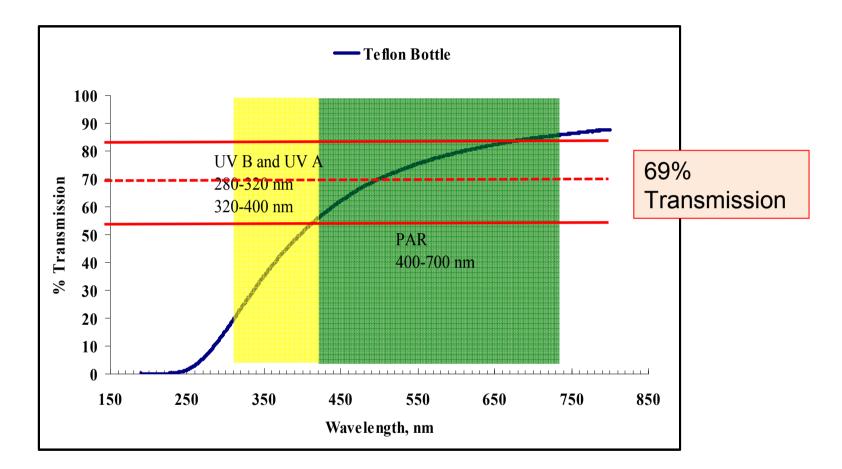
Pacific Northwest NATIONAL LABORATORY

Sampling Sites

- Two Sampling Periods
 - December 2007 8 sites
 - July-August 2008 5
 sites (3 dry sites)
- Samples Collected At Outlets of Field (●)
- Samples Incubated in Open Water Site (O)

Bottle Incubation Experiments

- 10 L of filtered (0.45µm) surface water
- Spiked wintertime samples with MMHg (~ 0.4 ng/L)
- Sample homogenized and aliquoted into clear and opaque FEP Teflon[®] bottles
- Bottles placed in 13 mm Polypropylene mesh bags
- Bottles incubated horizontally on the surface
- Collected and preserved ~5 time points over 50-70 hour deployments.
- Preserved with acid to stop
- ⁸ experiment

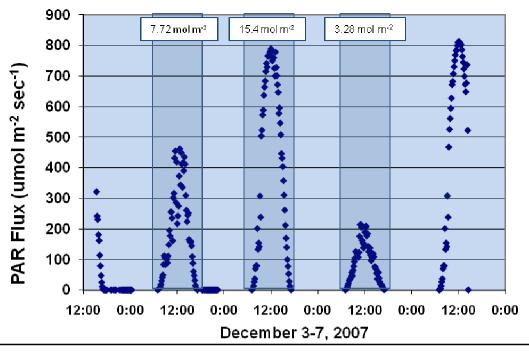


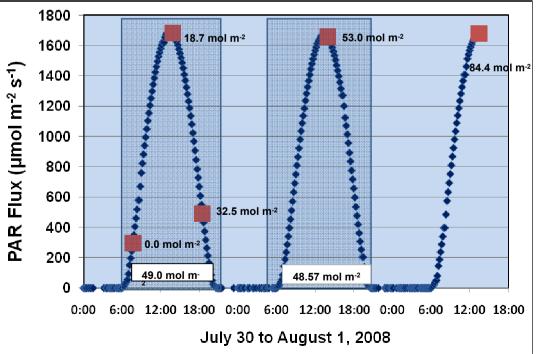
A Typical Photo-Degradtion Experiment

- 4-5 time points
- Opaque Bottle Control
- Not a Typical Kinetic Experiment
- Relate decrease in MMHg concentration to total light exposure (rather than time)
 - mol of electrons striking water surface over duration of experiment (mol m⁻²)
 - PAR Measurements
- Slope of Line = photodegradation rate
- Correct for drop in light intensity through bottle wall

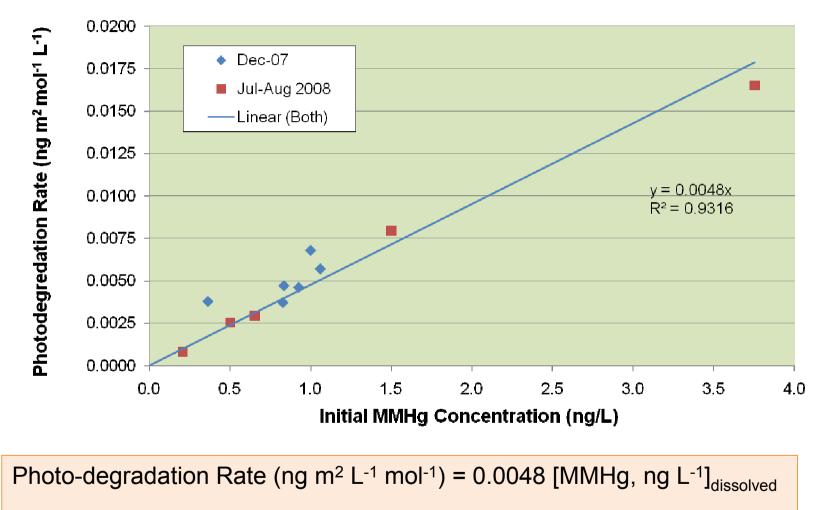
Light Transmission Through a Teflon bottle

From: Byington (2007). Photo-degradation of methylmercury in the Sacramento-San Joaquin Delta Estuary. Master Thesis, San Jose State University.




Light Intensity

- Photosynthetic Available Radiation (PAR)
- Ultraviolet Radiation (UV-a plus UV-b)
- 10 minute intervals (µmol/m²/s)
- Integrated PAR (mol/m²)
- Discrete Profiles (attenuation with depth)


Modeling MMHg Photo-degradation

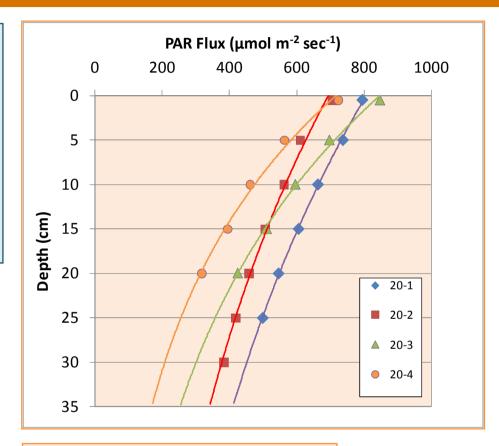
Mass Balance Assessment Must Account for:

- Temporal Changes in Solar Irradiation (Daily and Seasonally)
- MMHg Concentration Dependence on Degradation Rate
- Light Attenuation with Depth in Water Column (TSS dependent)
- Shading by Emergent Grass
- Output
 - Mass of MMHg lost in a square meter of the water column per day (ng MMHg/m²/day)
 - Percent loss per day

Concentration Dependance

Rate Constant = 0.0048 m² mol⁻¹

PAR Depth Dependence


PAR at depth (z)

$$PAR_{(z)} = PAR_{(0)} e^{\mu(z)}$$

Where:

µ = extinction coefficient or
attenuation coefficient (units = cm⁻¹)
(z) = depth in centimeters

- Highly Variable Extinction Coefficient
- Range = -0.019 to -0.041 cm⁻¹
- Average = -0.029 ± 0.011 cm⁻¹
- 38-82% of surface light at 20 cm
- Integrate over water depth

PAR Measurements From Four Open Water Locations in Domestic Rice Field 20 (June 26, 2008)

Shading By Emergent Grass

Mass Loss of MMHg as Function of Light Intensity and MMHg Concentration

Average Water Column Loss (ng/m²/day)

MMHg Conc.	Daily Integrated PAR (mol/m ²)							
(ng/L)	3	5	10	15	20	30	40	50
0.5	0.048	0.080	0.16	0.24	0.32	0.48	0.64	0.80
1.0	0.096	0.16	0.32	0.48	0.64	0.96	1.3	1.6
1.5	0.14	0.24	0.48	0.72	0.96	1.4	1.9	2.4
2.0	0.19	0.32	0.64	0.96	1.3	1.9	2.6	3.2
2.5	0.24	0.40	0.80	1.2	1.6	2.4	3.2	4.0
3.0	0.29	0.48	0.96	1.4	1.9	2.9	3.8	4.8
4.0	0.39	0.64	1.3	1.9	2.6	3.8	5.1	6.4
5.0	0.48	0.80	1.6	2.4	3.2	4.8	6.4	8.0
6.0	0.58	0.96	1.9	2.9	3.8	5.8	7.7	9.6
8.0	0.77	1.3	2.6	3.8	5.1	7.7	10	13
10.0	0.96	1.6	3.2	4.8	6.4	9.6	13	16

Extinction Coefficient = -0.029

Water Depth = 30 cm

Open Water Winter

Open Water Summer

Percent Loss of MMHg as a Function of Water Column Light Attenuation And Daily Light Intensity

Average Water Column Loss (%/day)

Extinction	Daily Integrated PAR (mol/m ²)							
Coefficient	3	5	10	15	20	30	40	50
-0.01	1.2	2.1	4.2	6.2	8.29	12	17	21
-0.02	1.1	1.8	3.6	5.4	7.22	11	14	18
-0.03	0.95	1.6	3.2	4.8	6.33	9.5	13	16
-0.04	0.84	1.4	2.8	4.2	5.59	8.4	11	14
-0.05	0.75	1.2	2.5	3.7	4.97	7.5	9.9	12
-0.06	0.67	1.1	2.2	3.3	4.45	6.7	8.9	11
-0.07	0.60	1.0	2.0	3.0	4.01	6.0	8.0	10
-0.08	0.55	0.91	1.8	2.7	3.64	5.5	7.3	9.1
-0.09	0.50	0.83	1.7	2.5	3.32	5.0	6.6	8.3
-0.10	0.46	0.76	1.5	2.3	3.04	4.6	6.1	7.6

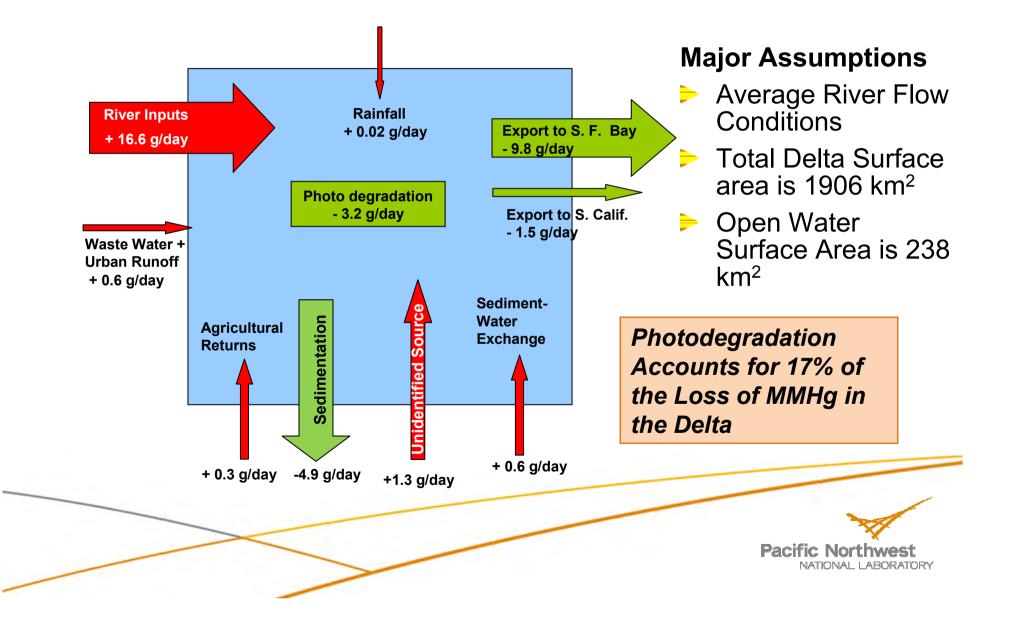
Water Depth = 30 cm

Open Water Winter

Open Water Summer

Typical Hydraulic Residence Times = 12-25 days *Bachand et al. (2010)*

Mass Loading Comparison


	Mass Loading of Unfiltered MMHg (ng/m²/day)					
Field	In	Out	Difference			
F20	0	2.1	-2.1			
F66	9.6	3.5	6.1			
R31	6.1	4.9	1.2			
R64	9.3	44	-34.7			
W32	0.5	0	0.5			
W65	3.9	3.8	0.2			
Median	5.0	3.6	0.3			
Avg.	4.9	9.7	-4.8			

Typical Summer Photo-demethylation Rate = 1-4 ng/m²/day

Pacific Northwest

Mass Loading Taken From: Bachand et al. (2009)

MMHg Mass Balance in the Delta

Conclusions

- Photo-degradation is abiotic and mediated by sunlight.
- Mass balance assessments suggest that photo-degradation is an import process in the cycling of mercury in aquatic ecosystems
- Knowledge of environmental factors that influence photodegradation will clearly be useful in developing management strategies to mitigate MMHg problems and for controlling high MMHg inputs into the Delta
 - Water clarity (TSS)
 - Emergent Aquatic Vegetation (shading)
 - Water Residence Time
 - Water Depth

Acknowledgements

USGS

Frank Anderson

Liz Beaulieu

Yolo Bypass Wildlife Area Staff

Dave Feliz

Mary

Spencer

Chris

Funding

State Water Resources Control Board

